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ABSTRACT

Neural Radiance Fields (NeRFs) have been remarkably successful at synthe-

sizing novel views of 3D scenes by optimizing a volumetric scene function.

This scene function models how an optical ray accumulates colors on its path

and eventually delivers this color to the camera pixel it impinges upon. Radio

frequency (RF) or audio signals can also be viewed as a vehicle for deliver-

ing information about the environment to a sensor. However, unlike camera

pixels, an RF/audio sensor receives a mixture of signals that contains many

environmental reflections. Is it still possible to infer the environment using

such mixed signals? We show that with redesign, the core NeRF framework

has the potential to solve this inverse problem. We focus on a specific appli-

cation of inferring the indoor floorplan of a home from WiFi measurements

made at multiple locations inside the home. Our inferred floorplans look

promising, and benefit downstream signal prediction applications. Our work

also uncovers a number of problems for continued research.
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CHAPTER 1

INTRODUCTION

Indoor floorplans play a crucial role in a wide range of applications, includ-

ing digital twins, context-aware systems like virtual assistants, indoor nav-

igation, and augmented reality. For instance, virtual assistants can provide

spatially-aware services, such as guiding users to specific rooms or control-

ling devices based on their physical location within a building. Estimating

indoor floorplans has been extensively studied, with many existing solutions

relying on visual sensors like cameras [1, 2, 3, 4, 5, 6], or LIDARs [7, 8].

These technologies typically require a robot or user to traverse the space,

collecting measurements from the environment to build a map. While these

methods provide accurate results, they come with significant limitations.

Visual sensors can inadvertently capture user-sensitive information, raising

privacy concerns. Additionally, capturing a comprehensive floorplan using

visual data often requires exhaustive measurements, as every wall and corner

of the indoor space must be viewed.

This thesis presents a novel approach to indoor floorplan estimation that

mitigates both privacy and measurement efficiency challenges. More specif-

ically, we are interested in inferring the floorplan of an indoor environment

by measuring wireless signals from a mobile sensor. Using wireless sensing

modalities such as RF or audio signals offers advantages in both the afore-

mentioned challenges. Rich details of the user’s home are not captured with

RF/audio signal measurements (or at least not at the extreme resolution of

visual sensors). Moreover, radio/audio waves propagate through walls, al-

lowing MapFill to operate with fewer measurements – the user does not need

to collect measurements from every room and corner. One could envision

this as a user walking around with a phone in a home; can the phone record

ambient WiFi signals (or audio music played from loudspeakers) and learn

the home’s floorplan?
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MapFill

WiFi measurements Binary floorplan

Figure 1.1: Overview of the problem

Figure 1.1 illustrates our “MapFill” ing problem where we observe the sig-

nal power at a series of locations in the environment as our input shown as

a heat map and the output is the floorplan of the environment. This seems

plausible, as the signal that arrives at the phone is a function of the envi-

ronment’s layout, the phone’s location, and the signal propagation model.

Signals passing through walls experience attenuation, and reflected signals

arrive at the receiver with reduced power compared to those traveling via a

direct, unobstructed path. As a result, the received signal at any location

is effectively a summation of multiple components—some traveling directly,

others passing through walls, and yet others arriving after one or more re-

flections. In essence, the spatial layout of the indoor environment shapes the

observed signal. Figure 1.2 illustrates the signal propagation process in an

indoor floorplan with one transmitter and one receiver. To achieve this, we

provide two solutions, one that invloves learning the underlying signal prop-

agation model implicitly from data and the other where the signal power

is explicitly modeled as a function of the floorplan using Neural Radiance

Fields (NeRFs) [9].

We briefly outline the two approaches in this Chapter. In the following

chapters, we provide an in-depth discussion of these two approaches, with

particular focus on the NeRF-based solution, which we consider the most

innovative contribution of this thesis.

1.1 PhyMap

Floorplans inherently contain structural elements such as walls, doors, and

furniture. These structures directly influence wireless signals, as the received
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Tx

Rx

Figure 1.2: Signal propagation in a floorplan with one transmitter and one
receiver. Direct path is shown in blue line, while the reflected paths are
with black dotted lines.

signals undergo interactions with the environment during propagation. Con-

sequently, estimating floorplans from wireless signals constitutes an inverse

problem, where the forward process describes signal propagation by modeling

signal power as a function of the environment.

In this work, we explore a data-driven approach to establish a mapping be-

tween measured signal power and the corresponding floorplan. Our proposed

model, PhyMap, first learns a compact representation of the environment and

subsequently relates input signal measurements to these learned represen-

tations. Given that limited measurements can lead to multiple plausible

floorplans generating the same signal power, our mapping function is de-

signed to produce a distribution over potential floorplans, thereby capturing

this ambiguity.

The key challenge in this approach is make the mapping function learn

the signal propagation model. While data-driven models excel at capturing

structures in floorplans, directly learning a mapping from the signal power

to the floorplan seems difficult – many functions can generate the same sig-

nal power given the limited number of measurements. To overcome this

limitation, PhyMap incorporates a learnable physics-based model, PhyModel,

which approximates the forward signal propagation process. Once learned,

PhyModel facilitates physically-informed guidance to the inverse mapping

function, ensuring that the generated floorplan is consistent with the ob-

served signal power. Moreover, PhyModel is fully differentiable, enabling its

integration into a test-time optimization framework and downstream tasks,
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such as signal prediction.

Our physics-based model PhyModel requires the transmitter’s location, re-

ceiver locations, and the environmental floorplan as inputs to predict the sig-

nal power at the receiver locations. However, since no prior knowledge about

the transmitter’s location is assumed, we design PhyMap to jointly estimate

the transmitter location as part of the floorplan estimation process. Further

details regarding PhyMap and PhyModel are discussed in Chapter 4. However,

our experiments reveal that relying solely on the physics model PhyModel is

insufficient for accurately solving the inverse problem. Specifically, certain

floorplans may better fit the observed signal power than the actual floorplan,

indicating that PhyModel does not perfectly capture the true underlying ray

tracing dynamics. Consequently, while PhyModel demonstrates potential for

modeling signal propagation with good performanace, it alone cannot reli-

ably guide the inverse mapping function towards learning the true floorplan.

Thus, explicit modeling of signal propagation is essential to solve the inverse

problem, laying the foundation for our NeRF-based approach.

1.2 NeRFMap

Our second approach to “MapFill” problem builds on the idea of Neural Ra-

diance Fields (NeRFs), and using them to implicitly learn the floorplan from

wireless signals. We view our NeRF-based solution as the main contribution

of this thesis and spend most of the thesis discussing this approach.

NeRFs [9, 10, 11, 12] have delivered impressive results in solving inverse

problems, resulting in 3D scene rendering. While NeRFs have mostly used

pictures (from cameras or LIDARs) to infer a 3D scene, we ask if the core

ideas can generalize to the case of wireless signals as well (such as RF or

audio). Generalizing optical NeRFs to wireless sensing seems plausible since

wireless measurements are just observations from inside the scene, while

NeRF images are typically taken from the outside. A growing body of work

[13, 14, 15, 16, 17, 18] is investigating this connection between NeRFs and

wireless. While none have predicted floorplans, NeRF2 [15] and NeWRF [16]

have adopted NeRFs to predict WiFi signals at different locations inside an

indoor space. However, we find that such predictions can be successful with-

out necessarily solving the floorplan inference problem. In other words, it is
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(a) (b) (c) (d) (e)

Figure 1.3: Overview: (a) User’s device measures wireless signal power. (b)
Transmitted signals arrive at the device along a line of sight (LoS) path and
after reflections from surrounding walls. (c) Our LoS model estimates crude
walls. (d) Our first-order reflection model refines the inner and outer walls.
(e) Together, the floorplan is estimated which can then be used to predict
signals at new locations.

possible to learn an implicit representation of the scene that does not align

with signal propagation models. Our goal is to design an objective function

that models indoor signal propagation and, in turn, trains the NeRF to learn

the environment’s floorplan. Once learnt, the floorplan can be utilized for

various downstream tasks, such as signal prediction or basic ray tracing.

In our model, each NeRF voxel is defined by its opacity δ ∈ [0, 1] and ori-

entation ω ∈ [−π, π]. When trained perfectly, free-space air voxels should be

transparent (δ = 0), wall voxels should be opaque (δ = 1), and each opaque

voxel’s orientation should match its wall’s orientation. As measurements, we

use the received signal power, easily available from any receiver’s hardware.

Thus, the input to our NeRFMap model is the transmitter (Tx) location, a

sequence of known receiver (Rx) locations, and the signal power measured

at each Rx location (Figure 1.3(a)). The output of NeRFMap is an (implic-

itly learnt) floorplan of the indoor environment. We expect to visualize the

floorplan by plotting the learnt voxel opacities.

The key challenge in learning floorplans is in modeling the correct reflec-

tions since these reflections help reveal where the walls are. However, without

knowledge of the walls, the reflections are not easy to model, leading to a type

of chicken and egg problem. Additionally, the number of wireless measure-

ments are relatively sparse since we envision users walking around with their

phones only for a few minutes. Finally, measured signals will have “blind

spots”, meaning that rays that bounced off certain regions of the walls may

not have arrived at any of the Rx locations. This leaves gaps or holes in the

floorplan and NeRF’s interpolation through these gaps will produce error or

blur.
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NeRFMap approaches this problem by modeling the received signal power

as a sum of the line of sight (LoS) power and the power from first-order

reflections (Figure 1.3(b)). The LoS model is inherited from classical NeRFs.

The main departure from past work is in modeling the reflections. Since

opaque voxels are unknown during training, the reflection surfaces are not

known; hence, the reflection power at the Rx is modeled as an aggregate

over all plausible reflections. Fortunately, for a given ⟨Tx,Rx⟩ pair, the

voxels that can cause reflections lie on a geometric manifold (under reasonable

assumptions), reducing the plausible set. The reflections are aggregated over

this set to finally model the total (LoS + reflection) power.

NeRFMap trains to minimize the loss between the total and measured power

across all Rx locations, and in the process, learns the voxel’s opacities that

best explain the measured dataset. To cope with sparse measurements, regu-

larizations are added to enforce smoothness among local voxels; a penalty is

imposed to prevent learning multiple reflections from one manifold. Lastly,

NeRFMap freezes the LoS model once it converges (Figure 1.3(c)), and uses this

intermediate state to partly supervise the reflection model (Figure 1.3(d)).

To evaluate NeRFMap, we train on 2.4 GHz WiFi measurements from NVIDIA’s

Sionna simulator [19], with floorplans from the Zillow’s Indoor Dataset (ZIND)

[20]. Results show consistent improvement over baselines in terms of the esti-

mated floorplan’s IoU and F1 score. Qualitative results show visually legible

floorplans without any post-processing. As a derivative of the floorplan,

NeRFMap can compute the received signal power for new ⟨Tx,Rx⟩ locations

(outperforming existing baselines), and also shows basic ray tracing to ex-

plain this power, offering interpretability to its predictions.

The remainder of the thesis is organized as follows: In Chapter 2, we review

the necessary background. In Chapter 3, we discuss the related work. In

Chapter 4, we discuss the PhyMap and PhyModel framework, followed by the

results, challenges and discussion. In Chapter 5, we present the NeRF-based

solution NeRFMap. In chapter 6, we show experimental results of NeRFMap

with baselines, few downstream applications, and limitations. Finally, we

conclude the thesis in Chapter 7.
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CHAPTER 2

BACKGROUND

2.1 Channel Impulse Response

When a wireless signal propagates, it is typically influenced by multipath

effects such as reflections and scattering, as well as attenuation caused by

the surrounding environment—collectively referred to as the channel. The

overall impact of these phenomena on the signal is characterized by a linear

model known as the Channel Impulse Response (CIR) [21].

Mathematically, the CIR is expressed as a sum of scaled and delayed im-

pulses as shown in Equation (2.1).

h(t) =
N∑
i=1

αie
jϕiδ(t− τi), (2.1)

where N is the number of multipath components, αi denotes the amplitude

(attenuation factor) of the i-th path, ϕi represents the phase shift of the i-th

path, and τi is the delay of the i-th path.

For an input signal x(t) transmitted through the channel h(t), the output

signal measured at Rx, y(t) is obtained by the convolution:

y(t) = x(t) ∗ h(t) + n(t), (2.2)

where n(t) represents additive noise. For a simple two-path channel with a

line of sight (LoS) path and one reflected path, the CIR h(t) is given as

h(t) = α1δ(t) + α2e
jϕ2δ(t− τ2), (2.3)
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The received signal y(t) would then be:

y(t) = x(t) ∗
[
α1δ(t) + α2e

jϕ2δ(t− τ2)
]

+ n(t) (2.4)

In a complex indoor environment, the number of multipath components N

increases significantly due to multiple reflections, diffractions, and scattering

caused by walls, furniture, and other obstacles. Each path differs in ampli-

tude, delay, and phase, resulting in a CIR that encodes information about

the spatial geometry of the environment.

To analyize the received signal strength at a particular location, the total

received power is typically considered, computed as the squared magnitude

of the CIR:

Precv = |h(t)|2 (2.5)

The relative signal strength indicator (RSSI) is a common metric used to

quantify this power, which is often expressed in decibels (dBm). The RSSI

can be calculated as:

RSSI = 10 log10 (Precv) , (2.6)

These scalar power values Precv and RSSI, derived from the CIR and used

interchangeably, serve as the input measurements in our work for inferring

the indoor floorplan.

2.2 Neural Radiance Fields

Neural Radiance Fields (NeRF)[9] is a method for synthesizing novel views

of complex scenes by learning a continuous volumetric scene function from

a set of posed images. The scene function takes a 3D spatial coordinate

and a viewing direction as input and outputs the radiance and opacity at

that point. NeRFs is trained by optimizing the weights of a neural network

to minimize the error between the rendered images and the ground truth

views. Once trained, the NeRF can be used to render novel viewpoints of

the scene by querying the scene function at different 3D coordinates and

viewing directions.
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More formally, the color observed along a camera ray r(t) = o + td is

computed using the volume rendering equation:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, (2.7)

where σ is the volume density, c is the emitted color, and T (t) is the accu-

mulated transmittance along the ray.

To make the integral tractable, NeRF employs a quadrature approximation

from [22], allowing the integral to be approximated as:

C(r) =
N∑
i=1

Ti (1 − exp(−σiδi)) ci, where Ti = exp

(
−

i−1∑
j=1

σjδj

)
, (2.8)

and δi = ti+1 − ti is the distance between adjacent sample points along the

ray. NeRF is tasked to learn the volume density σi and color ci at any sample

point r(ti) along a ray and is trained using the following loss function:

L =
∑
r∈R

∥∥∥Ĉ(r) − C(r)
∥∥∥2
2
, (2.9)

where Ĉ(r) is the predicted color and C(r) is the ground truth color along

ray r. In practice, NeRF uses two networks—a coarse network to estimate a

rough global structure of the scene, and a fine network that focuses on higher-

resolution details by sampling more densely in regions of interest identified

by the coarse model.
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CHAPTER 3

RELATED WORK

3.1 Wireless (WiFi) channel prediction using NeRFs

NeWRF[16] and NeRF2[15] are recent papers that have used NeRFs to predict

the wireless channel impulse response (CIR) [23] at unknown locations in-

side a room. Drawing a parallel to optical NeRFs, a voxel’s color in optics

becomes a voxel’s transmit power in wireless. The voxel’s density in optics

remains the same in wireless, modeling how that voxel attenuates signals

passing through it. NeRF2 and NeWRF learn to assign transmit power and

attenuation to each voxel such that the measured CIR is matched (i.e., L2 loss

minimized) over training locations inside a room. The authors explain that

voxels assigned non-zero transmit power will be called virtual transmitters,

and will model the reflections in the environment. However, many assign-

ments are possible that fit the CIR training data, especially when the data is

sparse (Figure 3.1 illustrates two possible assignments). While the predicted

CIRs could achieve low error for all such assignments, only one of the as-

signments will model the true reflections, forcing the virtual transmitters to

be located on the wall surfaces (Figure 3.1(b)). We have plotted NeRF2 and

NeWRF’s assignment of voxel densities (see Figure 3.1(c,d)) to confirm that

their high accuracy in CIR prediction is not an outcome of correctly learning

the wall layout. NeRFMap’s goal is to assign the voxel densities correctly using

the simple NeRF framework, which should naturally yield the floorplan.

3.2 Neural radiance fields for audio

Another exciting line of research focuses on predicting room impulse response

(RIR) for audio [17, 24, 18, 25]. Neural Acoustic Field (NAF) [17] extended

10



Figure 3.1: (a) Fitting signal power using virtual Txs. (b) Ideally, virtual
Txs should be located on wall surfaces. (c) Sparse virtual Txs learnt by
NeWRF shown in black/gray dots. (d) Dense virtual Txs learnt by NeRF2.
Neither correspond to the true floorplan (shown in red).

the classical NeRF to train on RIR measurements in a room and predict

the RIR (magnitude and phase) at new ⟨Tx,Rx⟩ locations. NAF identi-

fied the possibility of overfitting to the RIR and proposed to learn, jointly,

the local geometric features of the environment (as spatial latents) and the

NAF parameters. The spatial latents embed floorplan information, but a de-

coder needs to be trained using the partial floorplan data. NeRFMap requires

no floorplan supervision, and secondly, relies entirely on signal power (less

informative than RIR) to estimate the floorplan.

Follow up works have focused more on improving the RIR accuracy and

have utilized explicit information about the surrounding, namely pictures

[26, 24, 18, 27], LIDAR scans [28], or optical NeRFs [25], to better guide

their MLPs. RIR prediction results are steadily improving; however, this

sequence of ideas is veering away from the inverse nature of the problem.

Our goal is to first invert the signal power to a floorplan, which can then

enable CIR/RIR predictions.
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3.3 Modeling reflections in optical NeRFs

Optical NeRFs have tackled reflections [29, 30, 31] for synthesizing glossy

surfaces and mirrors, and for re-lighting [32, 33]. NeRFRen [34] proposes

to decompose a viewed image into a transmitted and a reflected component.

To synthesize novel views, the two component images (learnt by separated

branches of the MLP) are added with learnt weights to appropriately sup-

press the reflected component. Ref-NeRF [35] also focuses on reflections

through a similar decomposition of the transmitted and reflected color, how-

ever, the reflected color is modeled as a function of the viewing angle and

the normal to the surface, resulting in accurate models of specular reflec-

tion. Several other papers have developed similar ideas [36, 37] and the

core insight centers around solving a 2-component decomposition problem.

NeRFMap faces the challenge of not knowing the number of rays adding up

from all possible directions in the environment. Hence, NeRFMap must solve

a many-component decomposition problem using the physics of signal prop-

agation (an RF specific opportunity).

3.4 Floorplan Estimation

Finally, floorplan estimation, as a technology, has matured significantly with

RGBD cameras [38, 1, 2, 3, 4, 6], LIDARs [7, 8], and even smartphone cam-

eras (in Apple’s ARKit) [39]. Early methods focused on hand-crafted ge-

ometric features and layout priors [40, 41, 38, 42], leveraging cues such as

vanishing points, edge maps, and planar surfaces to infer room structures.

More recent approaches have shifted toward deep learning-based techniques,

using neural networks to directly predict layouts. Some of these method use

visual data for segmentation [5], layout regression [3, 1], while others lever-

age panoromic images [2, 4] and 3D point clouds [43, 44] to perform similar

tasks. However, using visual sensors indoors can be invasive to the user’s

privacy; PhyMap and NeRFMap aims to infer floorplans through less invasive

RF signals. More importantly, for NeRFMap, we are keen on helping NeRFs

learn wireless signal propagation, especially first-order reflections; floorplan

estimation is one application of this learning exercise.
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CHAPTER 4

PHYMAP

4.1 Setup and Overview

We aim to infer a 2D floorplan from WiFi measurements of received signal

strength indicator (RSSI) at various locations within an indoor environment.

Let ϕ be a binary matrix of size L × L, representing the indoor floorplan,

where L is the maximum length of the floorplan. The training data consists

of WiFi RSSI measurements {ψ(Rxi)} at a set of receiver locations {Rxi},

corresponding to various trajectory locations traversed by the user. Note

that we do not assume the locations of the (fixed) transmitter Tx, in fact,

PhyMap is designed to predict the transmitter location as well. The goal is

to learn a model that can map these measurements to the 2D floorplan ϕ.

The signal power ψ, received by a receiver Rx (with the subscripts omitted

for generality), can be modeled as:

ψ = ψLoS + ψref1 + · · · + ψrefn

where ψLoS is the power from the direct line-of-sight (LoS) path, and ψRefk

is the aggregate power from all kth order reflections (i.e., all signal paths that

underwent exactly k reflections before arriving at the Rx). We ignore the

effects of diffraction and scattering in this work. We assume that the RSSI

at location Rx is independent of time and is only a function of the obstacles,

the transmitter, and the receiver. Additionally, to leverage the inherent

inductive biases through convolutions, we convert these receiver locations

{Rxi} and measurements {ψ(Rxi)} into 2D matrices R and Ψ, respectively.

To summarize, the task is then to map the WiFi measurements Ψ to the 2D

floorplan ϕ through a learning model.

Given the complexity of high-dimensional floorplan images, we first project
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these images onto a lower-dimensional latent space. These latent represen-

tations capture the critical features of indoor layouts and are subsequently

utilized to map received RSSI measurements to feasible floorplans. Since

multiple distinct floorplans can produce nearly identical WiFi RSSI measure-

ments, especially when the number of measurements is limited, identifying

a unique floorplan is challenging. Additionally, minor structural changes,

such as adding or removing a wall far from the transmitter, can often lead

to negligible variations in signal strength, necessitating a model capable of

generating multiple plausible floorplans.

In PhyMap, we train a model that maps RSSI data onto this lower-dimensional

latent representation space. This involves learning a direct relationship be-

tween observed RSSI values at receiver locations and the corresponding floor-

plan latents. In order to map to multiple floorplans that can explain the

same set of RSSI measurements, we design the mapping to learn a distribu-

tion over the floorplan latents that we can sample from. To accommodate

multiple floorplans consistent with the same RSSI measurements, we design

this mapping to learn a distribution over the latent space, enabling sam-

pling of diverse plausible floorplans. Although the model can infer floorplans

upon training, verifying the accuracy of these inferred floorplans, especially

in real-world scenarios, remains challenging. To mitigate this, we introduce

an additional physics-based model, PhyModel, specifically designed to model

physical wave propagation. That is, our PhyModel is tasked with predicting

RSSI values from a given floorplan, receiver trajectories, and transmitter lo-

cations. Once trained, this physics-based model serves as guidance to refine

latent representations during the PhyMap’s training phase. An ideal PhyModel

should accurately model the physics of wave propagation in the environment,

which would effectively resolve the ambiguity in the inverse problem by fully

explaining the observed measurements. Since PhyModel is differentiable af-

ter training, we can optimize the floorplan latents even at inference time to

identify the floorplan that best aligns with actual measurements, enabling

PhyMap to support test-time optimization.
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4.2 Encoding Floorplans

Indoor environments are inherently complex, often cluttered with walls, fur-

niture, and other obstacles. Generating accurate floorplan images in high-

dimensional space is computationally challenging, and the ambiguity arises

when multiple floorplans can match the input set of WiFi RSSI measure-

ments. To address this, our approach focuses on projecting the high-dimensional

floorplan into lower-dimensional latent representations that is equipped with

the ability to sample these multiple floorplans. To this end, we propose us-

ing the Vector Quantized-Variational AutoEncoder (VQ-VAE) [45] to encode

the floorplan into a latent space. Given a set of floorplans Φ, we begin by

encoding each floorplan ϕ ∈ Φ onto a lower-dimensional latent space using

an encoder E1. Every floor plan ϕ is represented via a subset of a discrete

codebook of vectors. Specifically, let ck ∈ Rd be a latent vector, and let

C ∈ RK×d denote a shared embedding matrix of K such latent vectors. The

floorplan ϕ is first passed through the encoder E1 to obtain a continuous

latent representation, E1(ϕ) ∈ Rh×w×d, which results in h×w vectors in the

latent space. Each latent vector ze(j) ∈ E1(ϕ) is then discretized by finding

its nearest neighbor from the codebook in the following manner:

zq(j) = ck∗ where k∗ = argmin
k∈{1,...,K}

||ze(j) − ck||2 ∀ze(j) ∈ E1(ϕ)

Both the codebook and the encoder-decoder are learned together during the

training process and the gradient non-differentiability that happens due to

quantization is approximated with a simple straight-through gradient. The

discretized vectors zq(j), j = {1, . . . , h×w} are then sent to a decoder D1 to

reconstruct ϕ, and the model is trained using the reconstruction loss along

with two latent losses to ensure both the codebook and the encoder’s outputs

snap into each other simultaneously. Once trained, we freeze the encoder E1,

decoder D1, and the codebook C. Figure 4.1 represents the VQ-VAE model.

4.3 Method

Floorplans and RSSI measurements are two different representations of the

same underlying environment, where the RSSI measurements directly stem
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Figure 4.1: VQ-VAE model showing the codebook indices

from the floorplan in which they are measured. For example, recording WiFi

measurements and audio measurements in the same floorplan are both obser-

vations from the physical space, where RF and audio wave propagation occur

within the same environment. These two modalities, though different in na-

ture—one focusing on radio frequencies and the other on sound—are both

influenced by the same latent factors, such as the layout of walls, furniture,

and obstacles. So once we obtain the latent representation of the floorplans,

we utilize an additional encoder, E2, to project the input WiFi RSSI ma-

trix R onto the latent space of the floorplans. More specifically, E2 outputs

a softmax probability distribution over the codebook elements ck. The en-

coder’s output is then represented as E2(Ψ) ∈ Rh×w×K , where K denotes the

number of codebook elements. This step allows us to map the received WiFi

measurements onto the distribution of discrete floorplan latents. We note

that this representation of E2 allows us to sample multiple floorplans that

we can decode by first sampling from the softmax probabilities, and using

the trained decoder D1 and codebook C.

We train the encoder E2 using supervision. Additionally, the encoder is

tasked with predicting the transmitter’s (Tx) location within the floorplan.

This prediction is essential, as detailed in the subsequent section. We define

the effective loss function L̃ as follows:

L̃ = Lϕ + λ1LWiFi (4.1)

where Lϕ is the loss for snapping onto the codebook indices, LWiFi is the

error in Tx’s location, and λ1 is a hyperparameter. By optimizing the loss

function L̃, we obtain estimates of the floorplan through training encoder

E2. This involves sampling the set of argmax indices for each latent dimen-
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sion j ∈ {1, . . . , h × w}, retrieving the corresponding latent vectors from

the codebook C to form Zq ∈ Rh×w×d, and decoding the estimated floor-

plan ϕ̂ through the decoder D1 as ϕ̂ = D1(Zq). However, we observe that

the resulting floorplan estimates may not always accurately reflect the true

environmental layout (see details in Figure 4.6 in Section 4.7). Moreover,

without additional supervision or explicit constraints on the encoder E2, the

model can adapt to fit any arbitrary function that minimizes the error, po-

tentially leading to overfitting. This situation can lead to a model that fails

to capture the forward propagation process i.e., the physical ray-tracing in-

teractions inherent to the environment. To mitigate this, we introduce a

separate physics-informed model, denoted as PhyModel, designed to guide

encoder E2 toward predicting more physically accurate floorplans.

4.4 PhyModel

VQ-VAE
 

21 32 83 4

9 24 19 76

1 95 82 34

21 8 61 44

Figure 4.2: PhyMap model architecture

The core idea behind the PhyModel is to design a module that understands

the physics of wave propagation, including modeling line-of-sight attenuation,

reflection across wall surfaces. This physics-informed understanding is then

used to guide the encoder E2 in solving the true inverse problem: inferring
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more accurate floorplans. Ideally, if one had access to a differentiable emula-

tor that accurately mirrors the forward signal propagation—including both

penetration and reflection effects—and supports backpropagation, it could

be used to refine the floorplan estimate ϕ̂. Such an emulator would take the

current estimate ϕ̂ and the ground truth transmitter location Tx as inputs

(assuming the oracle has access to the ground truth Tx), and output the

predicted RSSI values at receiver locations. The resulting gradients could

then be propagated back through the encoder E2 to iteratively minimize

the RSSI prediction error. However, access to such an oracle that supports

differentiable ray tracing and knowledge of the transmitter’s location is not

feasible in practice. As a result, we pursue an alternative approach: training

a model end-to-end without relying on explicit ray tracing. The goal of our

PhyModel is to predict RSSI values at the receiver locations given the floor-

plan and transmitter location. We train the PhyModel using the following

loss function:

Lphy = ||Ψ − Ψ̂||22 (4.2)

where λ1, λ2 are hyperparameters.

Intuitively, PhyModel can be interpreted as a discriminator, analogous to

the critic in Wasserstein GANs [46]. Rather than merely assessing whether

the predicted floorplan ϕ̂ resembles the actual floorplan ϕ, it evaluates how

well the prediction aligns with the underlying RSSI measurements. We also

note that given a floorplan and transmitter location, every point within the

environment implicitly defines an RSSI value, whether observed or not. In

this setup, receiver locations serve as evaluation points for a spatial RSSI

function conditioned on the floorplan and transmitter location. Thus, RSSI

values corresponding to different receiver trajectories can be derived by ap-

plying relevant spatial masks to this continuous function. So our input to

PhyModel comprises the floorplan and transmitter location, and the model

outputs the RSSI values at all potential receiver positions. Once this physi-

cal model is trained, specific receiver locations query the predicted RSSI field

using a binary mask, extracting the expected RSSI values for those positions

of interest. We present two variants of the PhyModel model: one based on

a ResNet architecture [47] and another utilizing a Transformer architecture

[48].
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Figure 4.2 represents our PhyMap model. Thus, the loss function for training

the PhyMap model is given by:

L = Lϕ + λ1LWiFi + λ2Lphy (4.3)

where λ1, λ2 are hyperparameters.

4.4.1 Estimating Tx

PhyModel requires the transmitter location as an input along with the floor-

plan to predict the RSSI values any receiver location. However, during test

time, the true transmitter location is not available. To address this, we

predict the transmitter location during training as a distribution over the

floorplan using the encoder E2. We then sample from this distribution to

obtain a single point as the estimated transmitter location. To allow gradi-

ents to propagate through this sampling step, we utilize the Gumbel-softmax

operation [49], which approximates the non-differentiable argmax with a dif-

ferentiable alternative through a temperature controlled softmax function.

See Figure 4.2.

4.5 Test Time Optimization

Once PhyMap is trained, it can be used to infer the floorplan given the WiFi

measurements. Since PhyMap is capable of generating multiple plausible

floorplans, we can sample a set of candidates floorplans and evaluate them

against the measurements using the pretrained PhyModel. Additionally, one

can also perform test-time optimization by refining the predicted floorplan

through backpropagation, minimizing the loss in 4.2, assuming backpropaga-

tion through the PhyModel is feasible at test time. This is achieved by first

freezing the PhyModel, and then optimizing the encoder E2 to minimize the

RSSI reconstruction loss in 4.2 with respect to the predicted floorplan ϕ̂.
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4.6 Implementation Details

In this section, we provide an overview of the training pipeline and the key

design choices underlying our implementation. The training process involves

three main stages: (1) pretraining the VQ-VAE model, (2) training the

PhyModel to predict RSSI values, and (3) training the final PhyMap model to

predict the floorplan from RSSI measurements.

We assume the floorplan is of an unknown shape inside a 256 × 256 grid.

No assumptions are made regarding the trajectory lengths taken by users

collecting the RSSI measurements. Trajectories are collected using the as-

tar algorithm [50] to simulate a walking trajectory that traverses all rooms.

Throughout all stages, we use the Adam optimizer [51] with a learning rate

of 10−4, a batch size of 32, weight decay of 10−4. All models are implemented

in PyTorch and trained on NVIDIA A100 GPUs.

4.6.1 Pretraining VQ-VAE

In the first stage, we train the VQ-VAE to encode floorplan images {ϕ} into

a discrete latent space. We use a codebook of size 128 and set the latent

dimension to 20. Results and ablations are in Section 4.7. The VQ-VAE is

optimized to reconstruct input floorplans along with a codebook loss (to train

the codebook) and a commitment loss (to ensure the encoder’s output snaps

to the codebook). To address the non-differentiability of the quantization

step, we use the straight-through estimator [52] to allow gradient flow during

training.

4.6.2 PhyModel Training

The second stage involves training PhyModel, which learns to predict the

RSSI values given a floorplan and transmitter location at the receiver loca-

tions. As mentioned previoisly in Section 4.4, rather than restricting pre-

dictions to receiver locations alone, we predict the RSSI field across the

entire floorplan. This dense prediction strategy stabilizes training by captur-

ing the overall spatial structure of signal propagation and makes the RSSI

field smoother. To maintain differentiability, we sample from the latent space
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using Gumbel-softmax, enabling gradients to pass through the otherwise dis-

crete latent selections.

4.6.3 Training PhyMap

In the final stage, we train PhyMap by optimizing the encoder E2 to map

RSSI measurements to the corresponding latent floorplan representations.

We choose λ1 = 0.1 and λ2 = 1 for our training.

4.7 Results

Floor plan and Trajectory. Floorplans are drawn from the HouseExpo

[53], a large-scale dataset of indoor layouts derived from the SUNCG dataset

[54]. We also generate synthetic floorplans from apartment layouts and a

few layouts with random objects placed inside a room with an outer corridor.

Figure 4.3 and 4.4 show the synthetic and HouseExpo floorplans, respectively.

In each floorplan, an A∗ algorithm [50] is employed to simulate a walking

trajectory that traverses all rooms. We pick a random start and end point

in each room and connect them using the A∗ algorithm. This trajectory

simulates the path of a user walking while collecting WiFi measurements on

a mobile device.

Wireless Simulation Dataset. We utilize the NVIDIA Sionna RT [55, 19],

a differentiable ray tracer for radio propagation modeling, as the platform to

compute the ground truth signal power (also known as received signal strength

index (RSSI)). A transmitter (Tx ) is randomly placed within the floorplan,

and omnidirectional transmissions are simulated at a frequency of 2.4 GHz.

For receiver locations, we sample the user trajectory at a fixed time interval

Figure 4.3: synthetic floor
plans

Figure 4.4: HouseExpo floor plans
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to obtain R = {Rxi} at N Rx locations. We shoot 107 rays into the given

floorplan and consider only the rays that reach the receiver location within

5 bounces (i.e., up to 5th-order reflections); others attenuate excessively and

are negligible. The default materials for the walls are used in the simulation.

As with most WiFi simulators, Sionna does not model signal penetration

through walls – this means that a Tx and Rx located on opposite sides of a

wall will not receive any line of sight signal. Using Sionna, we obtain signal

power matrix Ψ = {ψ(Rxi)} by inputting (ϕ,Tx,R). In total, we collect

roughly 100,000 samples for training and 10,000 samples for testing.

Metrics. We evaluate using 3 metrics:

■ Mean Square Error (MSE): This metric measures the average squared

difference between the predicted and true floorplan images.

■ Intersection over Union (IoU) [56]: This metric measures the degree

to which the predicted empty regions (non-walls) and the true empty regions

(non-walls) superimpose over each other in the 2D floorplan. The following

equation defines the metric:

IoU =
EP ∩ EP ∗

EP ∪ EP ∗

where EP denotes the set of predicted empty white pixels and WP ∗ denotes

the true empty white pixels. We note that this is a simpler metric compared

to the Wall IoU metric defined in Chapter 5.

■ F1 score [57]: Defined as F1 = 2×P×R
P+R

, where P is the precision and R is

the recall of the bitmap. P and R are defined based on wall pixels, similar

as above.

4.7.1 VQ-VAE

Figure 4.5 shows the results of the VQ-VAE models for syntheic and House-

Expo floorplans with the codebook size 128 and the latent dimension of 20.

The β parameter for the commitment loss is set to 0.1. Ablatoins are per-

formed on the codebook size, latent dimension, and the β parameter (see

Table 4.1). We also train a vanilla Variational AutoEncoder (VAE) model

with a latent dimension of 1000 and 2000 and compare it with the VQ-VAE

model. VQ-VAE is able to reconstruct the floorplans better than the VAE
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model. The best model is able to reconstruct the floorplan with an MSE of

0.0047, an IoU of 0.94, and an F1 score of 0.97.

Figure 4.5: VQ-VAE model on syntheic floorplans: On the top is the
predicted truth floorplan, at the bottom is the ground floorplan.

Table 4.1: Comparison of MSE, IoU, and Dice Coefficient for VQ-VAE and
VAE models.

Method MSE IoU F1 Score
VQ-VAE:
codebook size = 32 × 5, β = 0.25 0.0083 0.9015 0.9482
codebook size = 128 × 20, β = 0.25 0.0069 0.9169 0.9567
codebook size = 128 × 20, β = 1 0.0066 0.9203 0.9585
codebook size = 128 × 20, β = 0.1 0.0047 0.9418 0.9700
codebook size = 128 × 20, β = 1000 0.0877 0.2869 0.4458
VAE:
latent dim = 1000 0.0062 0.9221 0.9595
latent dim = 2000 0.0062 0.9200 0.9584

4.7.2 PhyMap

Figure 4.6 illustrates the performance of PhyMap when trained without the

assistance of the physics-based model 4.6. While the model successfully cap-

tures key structures such as corridors, door openings, and few wall segments,

it fails to recover the entire floorplan accurately. This limitation arises from

directly mapping RSSI measurements to a floorplan without incorporating

physical constraints. As a result, the model occasionally introduces artifacts

in open spaces that do not intersect receiver trajectories, as seen in the third

column of Figure 4.6.
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Figure 4.6: PhyMap results on synthetic floorplans optimizing L̃ in 4.1, i.e.,
without guidance from PhyModel.

4.7.3 PhyModel

We implement PhyModel using a ResNet50 architecture [47]. The model

is trained to predict the RSSI field across the entire floorplan, conditioned

on the floorplan layout ϕ and the transmitter location Tx provided as bi-

nary masks. Predicted RSSI values are then masked using receiver location

maps R to compute the training loss. Figure 4.7 shows the predicted RSSI

maps by PhyModel on synthetic layouts. The results demonstrate that the

model is able to predict RSSI at the receiver locations accurately (fourth

row) comparable to the ground truth (third row). The last row also show-

cases model’s understanding of line-of-sight propagation and attenuation due

to obstructions such as signals on the opposite sides of a wall varying vastly.

Additionally, inverse square law behavior is captured as circular attenuation

patterns radiating from the transmitter location. Some reflected signal paths

are also visible, for example, in the top corridor of the second column, where

signals reflect and decay smoothly, although the direct path is blocked by the

corridor wall. PhyModel achieves a mean squared error (MSE) of 5.18 dB in

RSSI prediction.

With PhyModel trained, we train PhyMap using the composite loss function

in Equation (4.3). Figure 4.8 presents the resulting floorplan predictions.

Compared to the model trained without PhyModel as seen in Figure 4.6,
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Figure 4.7: PhyMap results on synthetic floorplans. Each floorplan has two
colunmns: the first column shows results on the predicted floorplan from
the VQ-VAE stage and second column is the ground truth floorplan. First
row is the ground truth floorplan, second row is the transmitter’s location,
third row is the receivers locations, fourth row is ground truth RSSI values,
fifth row is the predicted RSSI values, and the last row is the predicted
RSSI field. Darker red indicates stronger signal, and blue indicates weaker
signal.

we observe improved structural consistency and reduced artifacts. Quantita-

tively, incorporating PhyModel leads to a 4% improvement in IoU and a 2.1%

boost in F1 score (Table 4.2). Though the gain may appear modest, the IoU

metric tends to favor large empty regions, which both models handle well.

Observe that there are still few missing and extra walls in the predicted

floorplan, for examnpole, the last two columns. We can improve on these re-

sults by performing test-time optimization using the PhyModel to refine the

predicted floorplan as discuessed in Section 4.5. Figure 4.9 visualizes this

refinement process, where an initial floorplan prediction ϕ̂start is improved by

minimizing the RSSI error via backpropagation using PhyModel. The opti-

mized floorplan ϕ̂end exhibits stronger alignment with the ground truth. For

example, the small horizontal wall in the first column of ϕ̂start is adjusted

to match the actual layout by making it vertical. The model is also able

to resolve gaps (third column) and add missing partitions (fifth and sixth

columns). Correspondingly, the predicted RSSI maps Ψend more closely re-

semble the ground truth Ψ (compare third and fifth rows with the first row).
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Figure 4.8: PhyMap results on synthetic floorplans when trained with
PhyModel, optimizing Equation (4.3). Top row is the input RSSI
measurements, second row is the ground truth floorplan, third row is the
predicted RSSI values, and the last row is the predicted floorplan.

Table 4.2: Comparison of IoU and F1 Score for the models with and
without PhyModel.

Method IoU F1 Score
No PhyModel 4.1 0.852 0.893
PhyMap 4.3 0.886 0.912

4.8 Discussion

While the previous section demonstrates the promise of PhyMap in predicting

floorplans, we observe that the inclusion of PhyModel does not consistently

improve results across all examples. In particular, PhyModel often fails to

capture the full complexity of the Room Impulse Response (RIR) and phys-

ical propagation effects such as multipath reflections, thereby limiting its

effectiveness in guiding accurate floorplan inference.

Even though PhyModel can predict RSSI values at receiver locations with

reasonable accuracy, we find that some alternative floorplans—distinct from

the ground truth—can yield lower loss values. To illustrate this, Figure 4.10

presents contrastive examples where PhyModel assigns lower error to incorrect

floorplans. Each set of images consists of two columns: the first column

shows the floorplan with the lowest loss as predicted by PhyModel, while

the second column displays the next-best floorplan in terms of loss. In the
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Figure 4.9: PhyMap Test time optimization results on synthetic floorplans
optimizing for floorplan using PhyModel. Top two row shows the input
RSSI measurements and the ground truth flooplans, while the third and
fourth shows the predicted RSSI values and the predicted floorplan at the
start of the optimization. The last two rows show the predicted RSSI values
and the predicted floorplan at the end of the optimization.

first two sets, the floorplan with the lowest loss is identical or very close to

the ground truth layout, making them successful examples. In such cases,

PhyModel can effectively guide PhyMap to converge to the correct floorplan

during optimization. However, the remaining three sets on the right half

illustrate contrastive examples. Here, the floorplan with the lowest loss (first

column) deviates significantly from the ground truth (second column). These

failure cases show that optimizing with PhyModel can guide PhyMap toward

suboptimal or incorrect floorplans.

To improve PhyModel’s predictive capability, we explored two architectural

modifications: a two-component decomposition of the signal power into line-

of-sight and reflected signals, and a Dense Prediction Transformer (DPT)[58]

model. However, these changes did not yield substantial improvements in the

performance of PhyMap. Details and results of these experiments are provided
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in Appendix A.1.

Overall, these observations highlight a key limitation: many models can

accurately fit the observed RSSI data, yet they often fail to ensure that the

ground truth floorplan corresponds to the global minimum of the loss func-

tion. This suggests that current data-driven approaches, including PhyModel,

may not be sufficient to resolve ambiguities between multiple plausible floor-

plans. Furthermore, we find that the performance of PhyModel is heavily

dependent on the training data, which raises concerns about its ability to

generalize to diverse layouts or real-world environments, such as those in the

HouseExpo dataset. These limitations lead us to consider a more fundamen-

tal question:

Can we design a model that effectively understands wave propagation phe-

nomena—such as line-of-sight transmission and reflections from walls—in a

manner that accurately infers the underlying environment?

Good Samples Contrastive Samples

Figure 4.10: Contrastive examples of floorplan predictions using PhyModel

in PhyMap.

In the following chapter, we investigate this question through a new ap-

proach based on Neural Radiance Fields (NeRF), which integrates modeling

signal propagation and scene geometry directly into the learning framework

to truly solve the inverse problem of floorplan inference.
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CHAPTER 5

NERFMAP

5.1 Setup and Overview

The signal power ψ, received by a receiver Rx, can be modeled as:

ψ = ψLoS + ψref1 + · · · + ψrefn

where ψLoS is the power from the direct line-of-sight (LoS) path, and ψRefk

is the aggregate power from all kth order reflections (i.e., all signal paths that

underwent exactly k reflections before arriving at the Rx). We move the Rx

to N known locations and measure ψ at each of them. We assume M fixed

transmitters whose locations are also known. Our goal is to accept M × N

measurements as input and output the 2D floor-plan ϕ, where ϕ is a binary

matrix of size L×L, where L denotes the maximum length of the floorplan.

We train NeRFMap on the measured data using our proposed multipath

power function as part of the optimization objective. This function models

the LoS and the first-order reflections. Higher order reflections are complex

to model for real floorplans; moreover, they contribute, on average, < 6% of

the total power (see Figure 5.2). Hence, we disregard higher order reflections.

The network model we use is a remarkably simple MLP designed to predict

the density δ ∈ [0, 1] and orientation ω ∈ [−π, π] of a specified voxel in the

indoor scene (see Figure 5.1). The orientation aids in modeling reflections.

The multipath power function – parameterized by voxel attributes ⟨δ, ω⟩ and

the ⟨Tx,Rx⟩ locations – models an approximation of the received power ψ

at that Rx location. Minimizing L2 loss of this power across all Rx loca-

tions trains the MLP. Plotting out all the voxel densities in 2D gives us the

estimated floorplan ϕ.
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Figure 5.1: A typical line of sight path is shown in red, and first-order
reflections are shown in pink. Correspoding voxels are showns as dots.

5.1.1 Approximating Channel with First-Order Reflections

NeRFMap models the total received power at the Rx as the combination of

the LoS power NeRFMap LoS, and the contributions from all the first-order re-

flections. To validate the contribution of the achievable power from NeRFMap

when compared to the total received power ψ, we evaluate the relative con-

tributions of these signals to the total power using the NVIDIA Sionna sim-

ulator [55]. To this end, we compute the ratios of the LoS signal ψLoS, LoS

with the first-order reflections ψLoS +ψref1 , and LoS with the first two orders

of reflections ψLoS + ψref1 + ψref2 . These are compared to the total received

power ψ, which is approximated as the sum of the LoS power and the power

from the first ten reflections.

Figure 5.2 shows path power contribution ratio from different paths in

histogram. While the ψLoS power alone only accounts for approximately 70%

of the total received power and is more spread out, ψLoS + ψref1 accounts

to 95% of the total power, with a reduced spread. Moreover, secondary

reflections ψref2 only contribute to less than 3% of the total power. Hence,

NeRFMap models the first-order reflections along with the line-of-sight.

5.2 The LoS Model

Friss’ equation [59] from electromagnetics models the free-space received

power as Pr = K
d2

where d is the distance of signal propagation, and K is a

product of transmit-power, wavelength, and antenna-related constants [59].

We model this free-space (LoS) behavior in the NeRF framework through

30



Figure 5.2: Histograms illustrating the contribution ratios from line-of-sight
(LoS), LoS combined with first-order reflections, and LoS combined with
first- and second-order reflections. The orange graph highlights the
significant contribution of first-order reflections to the total power,
supporting NeRFMap’s approach of modeling only the first reflection
alongside the LoS power.

the following equation.

ψLoS = K

∏
{i:vi∈LoS}

(1 − δi)

d2
(5.1)

where K can be empirically measured, and d is the known distance between

the ⟨Tx,Rx⟩. The numerator includes the product of voxel densities over

all voxels along the LoS ray from Tx to Rx (with an abuse of notion, we

write this as vi ∈ LoS). This models occlusions. When the LoS path is

completely free of any occlusions (i.e., δi = 0, ∀i where {i : vi ∈ LoS}), we

expect the received power to only be attenuated by the pathloss factor d2 (in

the denominator). Equation (5.1) has a slight difference to classical NeRF’s

volumetric scene function. In our case, voxels along the ray do not contribute

to the received power (whereas in NeRF, each voxel’s color is aggregated to

model the final pixel color at the image). In other words, we have modeled

a single transmitter in Equation (5.1).
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5.3 The Reflection Model

To model reflections, we consider a given voxel vj. Whether vj reflects a ray

from the Tx towards Rx depends on (1) the density δj of the voxel, (2) the

orientation ωj, (3) the ⟨Tx,Rx⟩ locations, and (4) whether the path from Tx

to vj, and from vj to Rx are both occlusion-free. Parameterized by these,

Equation 5.2 models the reflected power at the Rx, denoted as ψref (vj), that

arrives after reflection on vj.

Let us explain this equation briefly. The leading δj ensures that voxel vj

is not a reflector when δj = 0. The f(θ, β) term models the wave-surface

interactions, i.e., how signals get attenuated as a function of the incident

angle θ and how signals scatter as a function of the offset angle β between

the reflected ray and the direction of the Rx from vj.

ψref (vj) = δjf(θ, β)

∏
k∈{Rx:vj}

(1 − δk)
∏

l∈{vj :Tx}

(1 − δl)(
dTx:vj + dvj :Rx

)2 (5.2)

The next two product terms ensure that for the Rx to receive this reflec-

tion, the voxels along the 2 segments (Tx to vj, and from vj to Rx) must be

non-opaque; if any δk or δl equals 1, that reflection path is blocked, produc-

ing no power contribution via this voxel vj to the receiver Rx. Finally, the

denominator denotes the total squared distance from Tx to vj, and from vj

to Rx, modeling the pathloss factor.

To complete the above model, the natural question is: which voxels are

contributing to the received power? Geometrically, any opaque voxel can be

a plausible reflection point between any ⟨Tx,Rx⟩ pair. This is because when

we consider the triangle between Tx, vj, and Rx, the voxel orientation ωj

can be assigned a direction that bisects the angle at vj. For this ωj, the

reflected ray will perfectly arrive at the Rx. Thus, without the knowledge

of orientation and density, the total first-order reflection power at the Rx

should be modeled as the sum of reflections on all voxels. This makes the

optimization problem excessively under-determined.

To cope with this, we assume that surfaces in the environment are orien-

tated discretely in one of Kω angles. When Kω = 4, the walls can either be

vertical, horizontal, tilted at 45◦ or tilted at 135◦. Under this assumption,

the voxels that can produce plausible reflections are far fewer – we call this
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Figure 5.3: Colored stripes define the manifold from which reflections are
plausible between ⟨Tx,Rx⟩. Voxels located on the manifold form the
plausible set V . Dashed lines show plausible reflections.

the “plausible set” V . Figure 5.3 visualizes V and marks a few examples of

plausible reflections from voxels with ωj = 45◦. Equation (5.3) sums up the

power from all reflections that occur on the plausible set:

ψref1 =
∑

j:vj∈V

ψref (vj) (5.3)

Thus, the final multipath power function becomes

ψ̃ = ψLoS + ψref1 (5.4)

5.4 Gradient Issues during Training

Figure 5.4: NeRFMap’s two-stage training approach: In Stage 1, the LoS
model is trained using known Rx locations and signal power. This provides
a warm-start to the reflection model in Stage 2 which refines the learned
voxel densities and orientation. During inference, NeRFMap outputs voxel
densities at set of queried Rx locations, representing the inferred floorplan.
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Training against an L2 loss, L = ||ψ̃ − ψ∗||2 1, did not generate legible

floorplans. We found that the ψLoS dominated the loss term, drowning the

reflection model’s influence on learning. At a high level, the gradient of

the LoS model (Equation (5.1)) w.r.t. δi has fewer terms in the numerator’s

product, and a smaller d2 in the denominator. The reflection model’s gradient

w.r.t. δi has many more terms since the reflection path is much longer; the

denominator is also larger. Since (1 − δj) ≤ 1, their products force the

gradient to decrease geometrically with more terms, causing the reflection

gradient to be much smaller compared to LoS.

We formalize this explanation below by considering the LoS and reflection

losses individually2.

LLoS =
∥∥∥ψ̃LoS − ψ∗

LoS

∥∥∥2
2
, Lref =

∥∥∥ψ̃ref − ψ∗
ref

∥∥∥2
2

Consider the gradient of LLoS w.r.t the density of vi.

∇δiLLoS = 2(ψ̃LoS − ψ∗
LoS)

∑
{n:i∈LoS(n)}

∇δiψ
(n)
LoS

where ∇δiψ
(n)
LoS = − K

d(n)
2

∏
j∈LoS(n)

j ̸=i

(1 − δj) (5.5)

where LoS(n) is the nth LoS path passing through voxel vi.

The gradient of Lref has a nearly identical expression with the only differ-

ence being many more product terms and that ∇δiψ
(n)
ref depends on where vi

is present in the n-th set of reflection path voxels (denoted by Ref (n)). For

example,

∇δiψ
(n),Tx
ref = −C

∏
j∈Ref

(n)
Tx:v

j ̸=i

(1 − δj)
∏

k∈Ref
(n)
v:Rx

(1 − δk) (5.6)

C =
δ(n)f (n)(θ, β)

(d
(n)
Tx:v + d

(n)
v:Rx)2

here ∇δiψ
(n),Tx
ref denotes the gradient when vi is between Tx to the reflection

1Here, ψ∗ denotes the ground truth signal power
2For the ease of explanation, we use ψ∗

LoS and ψ∗
ref to denote the ground truth LoS

and reflection powers, respectively. We do not need to know these terms in practice.
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point v.

Finally, since the modeled power approximates the measured power, the

residual error will remain non-zero even if the floorplan is accurately learnt.

As a result, the optimization is biased towards voxels of higher gradients,

i.e., voxels on the LoS path, suppressing the importance of reflections. To

address this, we train NeRFMap in 2 stages.

5.5 Multi-stage Training

Stage 1:We first use the LoS model against the measured ground truth power

ψ∗. This converges quickly because the network easily learns the transparent

voxels (δ = 0) that are located along LoS paths. For LoS paths that are

occluded, the network incorrectly learns excessive opaque voxels between the

⟨Tx,Rx⟩, but this does not affect the LoS error since the path is anyway

occluded. Hence, the outcome is a crude floorplan but a near-perfect LoS

power estimate ψ̃LoS. We utilize this ψ̃LoS in Stage 2 (discussed soon).

As Stage 1 training progresses, some opaque voxels emerge, offering crude

contours of some walls. We estimate a voxel’s spatial gradient, ∇δi, and

use it to supervise the orientation ωi of that voxel. The intuition is that a

voxel’s orientation – needed to model reflections in Stage 2 – is essentially

determined by the local surface around that voxel. The gradient ∇δi offers

an opportunity for weak supervision. Thus, the loss for Stage 1 is:

Lstage1 = ∥ψ∗ − ψLoS∥22 + L+ (5.7)

where L+ = λ1
∑
∀j

∥∇δj − ωj∥22 + λ2Lreg (5.8)

with λ1, λ2 > 0 being tunable hyperparameters. The regularization term

Lreg will be discussed soon. Finally, the near-perfect estimate of LoS power,

denoted ψ̃LoS, is also carried over to Stage 2 to ensure the reflection model

is penalized when it veers away from this LoS estimate.

Stage 2 focuses on training the reflection model using the following loss

function.

Lstage2 =
∥∥∥ψ̃LoS − ψLoS

∥∥∥2
2

+
∥∥∥ψ∗ − ψ̃LoS − ψref1

∥∥∥2
2

+ L+ (5.9)
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The first term in the RHS ensures that the Stage 1’s LoS estimate is hon-

ored in Stage 2. The second term subtracts Stage 1’s LoS power from the

measured power, (ψ∗ − ψ̃LoS); this models the total power only due to re-

flections. Our (first-order) reflection model ψref1 is trained to match this

aggregate power (L2 loss). The supervision on orientation and the regular-

ization terms are the same as in Stage 1.

5.6 Regularization

Floorplans demonstrate significant local similarity in orientation; hence we

penalize differences in orientation among neighbors, using a regularization

(Equation (5.10)) similar to Total Variation [60]. This can be achieved with-

out additional computational cost to the neural network by directly utilizing

voxel orientations obtained from each ray.

Lreg =
1

nv(nr − 1)

nv∑
n=1

nr−1∑
i=1

∥ωn,i+1 − ωn,i∥22 (5.10)

Here, nv is the number of voxels queried from the plausible set V and nr is

the number of voxels along each ray.

5.7 Relaxing Tx assumptions

We relax the assumption that Tx locations are known. Given the set of re-

ceiver locations {Rxi} and the signal powers {ψ∗
i }, the goal is to estimate

the transmitter location Tx = (Txx,Txy). To achieve this, we apply a

maximum likelihood estimate (MLE). Briefly, among all the measured signal

powers {ψ∗
i } from a given Tx we identify the P strongest signal powers and

their corresponding received locations. The rationale behind selecting the

strongest powers is that they are significantly influenced by the LoS com-

ponent, allowing us to model them effectively only using the Friss’ equation

[59]. We assume independence among the measurements since the received

LoS power across locations, for a given a Tx location, are independent. So,
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the likelihood equation for all these P measurements can be written as:

p(ψ∗
1, ψ

∗
2, . . . , ψ

∗
P |Tx) =

P∏
i=1

p(ψ∗
i |Tx)

We approximate that the ψ∗
i is normally distributed with a mean modeled

by the line-of-sight power K
d2i

and variance σ2 where di = ||Tx−Rxi|| is the

distance between Tx and Rxi. The likelihood function for each observation

ψ∗
i is thus given by:

p(ψ∗
i |Tx) =

1√
2πσ2

exp

(
−

(ψ∗
i − K

d2i
)2

2σ2

)

Maximizing log-likelihood L of {ψ∗
i } ∀ i ∈ {1, . . . , P}

logL(Tx) =
P∑
i=1

log

(
1√

2πσ2
exp

(
−

(ψ∗
i − K

d2i
)2

2σ2

))

logL(Tx) = −P
2

log(2πσ2) − 1

2σ2

P∑
i=1

(
ψ∗
i −

K

d2i

)2

Minimizing the second term gives the optimal Tx∗ as:

Tx∗ = argmin
Tx

P∑
i=1

(
ψ∗
i −

K

∥Tx−Rxi∥22

)2

We use Scipy’s ‘minimize’ with the BFGS method to numerically solve for

Tx∗.

5.8 Implementation Details

We assume the floorplan is an unknown shape inside a 512 × 512 grid. For

any ray or ray segment, we uniformly sample nr = 64 voxels on it. We

choose λ1 = λ2 = 0.01 for LoS training followed by λ1 = λ2 = 0.1 for

training the NeRFMap model. We find that discretized opacity values to {0, 1}
improve our LoS model. We use the straight-through estimator to avoid the

unavailability of the gradient at the discretization step. To help optimization

and to encourage sparsity of the number of reflections, we use only the top-
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k contributions (with k = 10) while training the reflection model. We use

the ADAM optimizer [51] with 1.0−4 learning rate. We train our models on

NVIDIA A100 GPUs.

5.8.1 Additional Details on Model training

The signal power measured at the receiver is typically represented in a loga-

rithmic scale. RSSI values generally range from -50 dB to -120 dB, where a

higher value (e.g., -50 dB) corresponds to a stronger signal. Figure 5.5 illus-

trates a typical input to NeRFMap where measurements have been collected

from approximately 2000 Rx s positioned in the floorplan, with data gathered

from five Tx s.

5.8.2 Linear-Scale RSSI Loss:

For the training of NeRFMap, we optimize on the linear-scale RSSI values.

Linear loss ensures that the receivers that capture stronger signals are given

more importance during training. We partition our dataset into an 80-20

split, using 80% of the data for model training, including baselines.

For NeRFMap’s network, we employ a simple 8-layer MLP with a hidden

dimension of 256 units. For each voxel vj, the outputs from the final layer

are passed through a sigmoid activation to obtain the opacity δ, and through

a Gumbel softmax [49] layer to sample the output normal ω from one of

the possible Kω orientations. This sampled orientation is then used in the

subsequent stages of training, such as for calculating the direction of the

reflected signal M . For the learnable baselines, such as MLP and NeRF2, we

adopt the same architecture as used in NeRFMap.

5.8.3 Supervising Voxel Orientations

NeRFMap leverages the spatial gradient of a voxel’s opacity, ∇δ, to super-

vise its orientation during the multi-stage training process. To compute this

gradient, we evaluate the opacities of neighboring voxels along each of the

Kω directions and apply finite difference methods. We found that this ap-

proach yielded superior results compared to using the gradient available via

38



Figure 5.5: Observed signal power at the Rx s . The top left figure shows
the positions of the Rx s and Tx s, followed by the power at the receivers
from each of the five transmitters. The colormap ranges from red showing
stronger signals to blue for weaker signals.

Figure 5.6: An incoming ray from a transmitter Tx reflecting around voxel
vj and arriving at receiver Rx . The incoming ray makes an incident angle θ
with the normal ωj to the reflecting surface. The ray after reflection passes
a receiver Rx at a certain distance making an angle β.

autograd.

In general, the power from reflections depends not only on the total dis-

tance traveled but also on the angle at which the reflection occurs at the

voxel vj, and whether the reflected ray reaches the receiver (Rx ). We model

this behavior through θ and β, respectively, which parameterize a nonlinear

function f . The incidence angle θ measures the angle between the Tx and

the orientation ωj, and β denotes the angle Rx makes with the reflected ray

M (see Figure 5.6). Note that if vj ∈ V , and if ωj is correct, β = 0. The

reflected ray M can be computed as shown in Equation (5.11).

M = (vj − Tx) − 2 [(vj − Tx).ωj]ωj (5.11)

Here ωj is a unit vector.
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CHAPTER 6

RESULTS

We now present our experimental setting followed by the results and analysis.

Floor plan and Trajectory. Floorplans are drawn from the Zillow Indoor

Dataset [20] composed of one-story homes. We also generate floorplans from

realistic apartment layouts. In each floor plan, we use the A∗ algorithm [50]

to generate a walking trajectory that traverses all rooms. This mimics a user

walking with a phone and collecting WiFi measurements. The rooms are

devoid of furniture; however, we will later add a few toy shapes to mimic

objects in the path of trajectories.

Wireless Simulation Dataset. We utilize the NVIDIA Sionna RT [55, 19],

a differentiable ray tracer for radio propagation modeling, as the platform to

compute the ground truth signal power (also known as received signal strength

index (RSSI)). We randomly place M Tx s, one in each room, denoted as Tm.

To simulate omnidirectional transmissions at 2.4GHz from each Tx location,

we shoot 107 rays into the given floorplan. For receiver locations, we sample

the user trajectory at a fixed time interval to obtain N Rx locations, denoted

as Rn. Only rays that reach the Rx location within 5 bounces (i.e., up to 5-

th order reflections) contribute to the RSSI; others attenuate excessively and

are negligible. Sionna accounts for specular reflections and refraction when

these rays interact with walls in the specified floor plan; we use the default

materials for the walls. As with most WiFi simulators, Sionna does not model

signal penetration through walls – this means that a Tx and Rx located on

opposite sides of a wall will not receive any RSSI. Overall, we gather M ×N

RSSI measurements (Tm, Rn, ψm,n) that serve as input to NeRFMap.

6.1 Baselines

Results are compared against the following baselines:
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Table 6.1: Performance Results for Wall IoU, F1 Score, and RPE

2000 receiver locations 1000 receiver locations

Method Wall IoU ↑ F1 Score ↑ RPE ↓ Wall IoU ↑ F1 Score ↑ RPE ↓
MLP - - 1.03 - - 0.65
Heatmap Segmentation 0.12 ± 0.03 0.21 ± 0.05 1.32 0.09 ± 0.02 0.16 ± 0.04 1.46
NeRF2 0.14 ± 0.02 0.24 ± 0.03 4.36 0.12 ± 0.02 0.21 ± 0.04 4.2
NeRFMap LoS 0.27 ± 0.07 0.42 ± 0.10 9.12 0.25 ± 0.04 0.39 ± 0.06 10.86
NeRFMap 0.38 ± 0.06 0.55 ± 0.06 3.56 0.32 ± 0.06 0.48 ± 0.05 4.32

1. NeRF2 [15]: Models WiFi reflections via virtual transmitters to predict

the channel impulse response (CIR).

2. Heatmap Segmentation [61]: Interpolates CIR across the whole floor-

plan and applies an image segmentation algorithm (on the interpolated

RSSI heatmap) to isolate each room. Essentially, the algorithm identi-

fies the contours of sharp RSSI change since such contours are likely to

correspond to walls. The raw trajectory signal power values are first in-

terpolated to obtain a heatmap that provides a smoother representation

of the input measurements. Of course, interpolating for regions with-

out any data can lead to incorrect results, especially in larger unseen

areas. A rule-based classifier is then applied for segmentation, using

two criteria: (1) RSSI values above a threshold to identify potential

room areas, and (2) smoothness of the RSSI signal, assessed through

the second-order derivative, to ensure continuity within rooms. The ini-

tial segmentation is refined using morphological operations (via dilation

and erosion) with a 3x3 kernel to smooth rough edges and eliminate

small components. Overlapping regions are resolved by comparing gra-

dient magnitudes, followed by additional morphological processing and

connected component analysis to obtain the final, refined segmentation.

Implementation details are included in the Appendix.

3. MLP: Trains a MLP network to directly estimate the RSSI based on

Tx and Rx locations.

4. NeRFMap LoS: Reports NeRFMap’s result considering only LoS path

(ablation study).

Metrics. We evaluate using 3 metrics:

(A) Wall Intersection over Union (Wall IoU): This metric measures

the degree to which the predicted walls and the true walls superimpose over
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Figure 6.1: Qualitative comparison of Ground Truth floorplans against
those inferred by baselines Heatmap Segmentation and NeRF2. The bottom
two rows show floorplans by our proposed models NeRFMap LoS and
NeRFMap with clearly demarcated walls and boundaries.

each other in the 2D floorplan. The following equation defines the metric

Wall IoU =
WP ∩WP ∗

WP ∪WP ∗

where WP denotes the set of predicted wall pixels and WP ∗ denotes the

true wall pixels. This is a harsh metric given wall pixels are a small fraction

of the total floorplan; if a predicted wall is even offset by one pixel from the

true wall, the Wall IoU drops significantly. IoU [56] has often been defined

in terms of room pixels (instead of wall pixels); this is an overestimate in our

opinion, since predicting even an empty floorplan results in an impressively

high IoU.

(B) F1 score [57]: Defined as F1 = 2×P×R
P+R

, where P is the precision and R

is the recall of the bitmap. P and R are defined based on wall pixels, similar

as above.

(C) RSSI Prediction Error (RPE): We split all Rx locations into a

training and test set. RPE reports the average median RSSI error over all

the test locations across floorplans.

42



6.2 Overall Summarized Results

Table 6.1 reports comparative results between NeRFMap and baselines, aver-

aged over 20 different experiments, using all 3 metrics. With N=2000 Rx

locations, the user is expected to walk for around 8 minutes, assuming her

phone is sampling at 4Hz. We repeat the experiment for fewer measurements

of N=1000, reducing the user’s burden to 4 minutes of walking; this is sparse

measurements given most floorplans are more than 250, 000 pixels. Mean and

standard deviation are reported in the table. NeRFMap outperforms all mod-

els in terms of Wall IoU and F1 Score. Compared to NeRFMap LoS, NeRFMap

demonstrates visible improvements, highlighting the advantage of modeling

reflections. The absolute Wall IoU values are understandably low because

the metric penalizes small errors.

NeRF2 is unable to predict the floor plan (opaque voxels) well and is only

able to achieve better RPE than NeRFMap LoS. NeRFMap outperforms both

NeRFMap LoS and NeRF2. Interestingly, MLP incurs a lower RPE than NeRF2

suggesting that RSSI is amenable to interpolation, and NeRF2’s implicit rep-

resentation may not be an advantage for this interpolation task.

6.3 Qualitative Results

We report qualitative results, including visual floorplans, predicted RSSI

heatmap, and ray-tracing visualization.

■ Visual floorplans. Figure 6.1 presents visualization from all baselines

and a comparison with our LoS-only model (as ablation). All the floorplans

use N = 2000 receiver locations. We make the following observations. (1)

Heatmap Segmentation leverages the difference of RSSI on opposite sides of

a wall, however, reflections pollute this pattern, especially at larger distances

between Tx and Rx. Further, signals leak through open doors, injecting

errors in the room boundaries. (2) NeRF2 performs poorly since its MLP

learns one among many possible assignments of virtual transmitters to fit

the RSSI training data. The virtual transmitters hardly correlate to the

walls of the environment. (3) NeRFMap LoS can infer the position of inner

walls. However, these walls are thick and slanted because while NeRFMap LoS

can identify occlusions between a ⟨Tx,Rx⟩ pair, it cannot tell the shape
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Figure 6.2: Heatmaps highlighting NeRFMap’s ability to learn signal
propagation. (Top row) Inferred RSSI heatmaps with Tx (red star) as used
in training. (Bottom row) A new Tx (green star) degrades NeRF2 and MLP

while NeRFMap shows accurate predictions.

and pattern of these occlusions. Crucially, NeRFMap LoS also cannot infer

the boundary walls since no receivers are located outside the house. (4)

NeRFMap outperforms the baselines, sharpens the inner walls compared to

NeRFMap LoS, and constructs the boundary walls well.

Shortcomings: Recall that some parts of the floorplan are in the “blind

spots” of our dataset since no reflection arrives from those parts to any of our

sparse Rx locations (e.g., see bottom left corner of the 1st floorplan; no signals

reflect off this region to arrive at any of the Rx locations). Hence, NeRFMap

is unable to construct the bottom of the left wall in this floorplan. Finally,

note that areas outside the floorplan (e.g., the regions on the right of 6th

floorplan) cannot be estimated correctly since no measurements are available

from those regions (hence, those voxels do not influence the gradients).

■ RSSI prediction. Figure 6.2 visualizes and compares predicted RSSI.

The top row shows predictions at new Rx locations with the Tx held at

the trained location; the bottom row shows predictions when both Tx and

Rx are moved to new locations. Two key observations emerge: (1) NeRFMap

is limited by Sionna’s inability to simulate through-wall signal penetration;
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Figure 6.3: (a) Tracing reflections on the learnt floorplan. (b) Ground truth
reflections from Sionna. Star indicates Tx

NeRF2 has access to an expensive license for a through-wall simulation and

shows better predictions inside the rooms. However, in areas that NeRFMap

can ”see” (e.g., corridors in the top row), the awareness of reflecting surfaces

leads to significantly better predictions. (2) When the Tx location differs

from that used in training, NeRFMap’s improvement over NeRF2 is significant.

This is the core advantage of first solving the inverse floor plan inference

problem and then leveraging it for RSSI prediction.

■ Learning reflected rays. For a given ⟨Tx,Rx⟩ pair, we examine the

points in the plausible set V that contribute to the reflections. Figure 6.3

compares the ray-tracing results from the NVIDIA Sionna simulator (we pick

only first-order reflections). NeRFMap captures many of the correct reflections.

Of course, some are incorrect – a false positive occurs in the bottom right

room since some wall segment is missing in our estimate; false negatives also

occur in the top right room where again some parts of the wall are missing.

6.4 Relaxing Assumptions & Sensitivity Study

■ Transmitter’s location. NeRFMap assumes known Tx locations but we

relax this assumption. We estimate the Tx location using maximum like-

lihood estimation from observed RSSI power, ψ∗. We describe the method

in Section 5.7; on average, the estimated Tx location error is 2.08 pixels in

floorplans of sizes ≈ 512 × 512 pixels.
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Figure 6.4. visualizes the ground truth and the estimated Tx locations

across 6 floorplans. The estimated Tx positions closely match the ground

truth, and we report the Tx location error to be 2.08 pixels. Figure 6.5.

demonstrates the performance of NeRFMap LoS and NeRFMap using the es-

timated Tx locations for the 6 floorplans in Figure 6.4. Performance is

comparable to that achieved with ground truth Tx locations, highlighting

robustness.

Figure 6.4: Comparison of Ground truth Tx locations indicated in red in
the first column with the estimated Tx locations shown in blue from
starting from column two. The Rx positions used for the estimation are
marked in green.

■ Receiver location error. Indoor positioning systems are able to localize

users but still incur some error. Table 6.2 shows NeRFMap’s sensitivity to

this error. We inject Gaussian noise N (0, σ2I) to the Rx locations; σ = 1

implies a physical error of 1m. Wall IoU accuracy obviously drops with error

but 0.5 meter of error is tolerable without destroying the floorplan structure.

Advancements in WiFi positioning systems are demonstrating robust sub-

meter error.
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Figure 6.5: Qualitative comaprison of NeRFMap LoS and NeRFMap when Tx
locations are unknown, and are estimated. The top row shows the ground
truth floorplan, Rx locations along with the estimated Tx s in blue. The
second and third row displays the performance of NeRFMap LoS and
NeRFMap respectively. Despite the Tx locations being unknown, our
methods accurately estimate them, leading to performance comparable to
the case where Tx locations are known.

Table 6.2: Estimated Wall IoU at various levels of injected noise σ

Error σ(m) 0 0.5 1 2 3
Wall IoU 0.38 0.35 0.33 0.29 0.26

■ Effect of Furniture. Figure 6.6 visualizes inferred floorplans when toy

objects are scattered in open spaces (Rx locations remain N=2000). NeRFMap

is able to identify some of the object blobs but sharpening the small objects

is challenging, due to more higher-order reflections from furniture. Follow-

up work is needed, either in modeling 2nd order reflections or by imposing

stronger regularizations.

Follow-ups. (1) The Sionna simulator does not model through-wall signal

penetration; hence, we have placed a Tx in each room. In reality (or in ex-

pensive ray tracing simulators [62]), WiFi signals will penetrate walls. This

is an advantage since signals from a single Tx will be measurable across the

whole home. However, voxel opacities will no longer be bimodal (0 or 1),

hence NeRFMap will need to assign δ ∈ [0, 1] to match the measured RSSI.

This will require modifications to our models. (2) The ability to model 2nd or-
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Figure 6.6: NeRFMap’s floorplan inference with furniture present in a typical
conference room (left) and apartment (right) layout.

der reflections will boost NeRFMap’s accuracy, allowing it to sharpen the scene

and decode smaller objects. Even for short range applications, such as non-

intrusive medical imaging, such 2nd and 3rd order reflections would be helpful.

This remains an open problem for the community. (3) Extending NeRFMap

to 3D floorplans is also of interest, and since it is undesirable to increase the

number of measurements, effective 3D priors, or 2D-to-3D post-processing,

may be necessary. Such post-processing tools exist [63], but we have not

applied them since our goal is to improve NeRF’s inherent capability. (4)

Fusing additional signal modalities, such as audio (from music loudspeak-

ers), or overhearing from many WiFi enabled devices at home, could lead

to increased measurement density. (5) Finally, NeRFMap floorplans can offer

valuable spatial context to Neural RIR synthesizers like [15, 16, 25, 18, 26].

Synthesized RIR could in-turn aid NeRFMap’s floorplan inference, forming

the basis for an alternating optimization strategy. We leave these ideas to

follow-up research.
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CHAPTER 7

CONCLUSION

In this thesis, we present two complementary approaches for inferring in-

door floorplans using wireless signal measurements. First, we introduced

PhyMap, a data-driven method that leverages a learned physical model to

map RF signal strengths to plausible floorplan representations. At the heart

of PhyMap is a physics-based model PhyModel that implicitly learns a con-

tinuous signal field over the environment, capturing key propagation effects

such as line-of-sight attenuation and reflections. This physical model serves

as a differentiable guide to refine the floorplan during training and facilitates

test-time optimization, enabling improved inference through gradient-based

refinement.

Next, we propose NeRFMap, a Neural Radiance Fields (NeRF)-inspired ap-

proach that explicitly models signal propagation to tackle the inverse prob-

lem of floorplan inference. By adapting the classical NeRF framework to RF

signals, NeRFMap captures multipath propagation, including line-of-sight and

all first-order reflections—accounts for most signal energy, by parameterizing

each voxel with opacity and orientation. The key idea involves teaching the

NeRF that reflections originate from a manifold, and then using a two-stage

optimization to mitigate gradient issues arising from line-of-sight dominance.

Our results demonstrate that NeRFMap successfully infers accurate floorplans,

outperforming baselines that predict the signal power without solving the in-

verse problem.

Both PhyMap and NeRFMap exhibit additional capabilities beyond floorplan

inference, including transmitter localization, signal field prediction, and basic

ray tracing. Looking ahead, we envision a unified framework that integrates

both paradigms—combining the data generalization strengths of PhyMap with

the signal modeling capability and interpretability of NeRFMap. We believe

such a hybrid model can pave the way for robust and generalizable RF-based

scene understanding in diverse real-world environments.
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APPENDIX A

PHYMODEL

A.1 Architectural Variants of PhyModel

To address the limitations of PhyModel discussed in Section 4.8, we investi-

gated alternative architectures with the aim of improving its ability to guide

floorplan inference.

A.1.1 Two-Component Signal Decomposition

The first approach involved decomposing RSSI prediction into two stages:

one to model line-of-sight (LoS) signals and the other to model reflections.

We trained two independent ResNet50 models for each component and com-

bined their outputs to estimate the final RSSI values. As shown in Fig-

ure A.1, this approach reduced the overall prediction error. However, it

requires ground truth separation of LoS and reflected components, which is

impractical in real-world settings.

A.1.2 Dense Prediction Transformer

We also evaluated a Dense Prediction Transformer (DPT) [58] to model RSSI

fields. The model was trained with the same loss function and dataset used

for PhyModel, but no architecture-specific adjustments were made from the

original DPT. As shown in Figure A.2, the DPT model achieved an MSE of

7.31 dB in RSSI prediction. However, this model did not translate into better

performance for floorplan reconstruction when integrated into PhyMap.
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Figure A.1: RSSI prediction using a dual-ResNet model separating
line-of-sight and reflected signal components. Left set denotes the
line-of-sight model, while the right set denotes the reflected signal model.
First column in every image pair shows performanace with VQ-VAE
reconstructed floorplans, while the second column shows performance with
ground truth floorplans.

A.2 Additional Attempts

We also experimented with injecting contrastive samples during training to

improve robustness. However, these efforts did not lead to measurable im-

provements in the ability of PhyModel to distinguish between correct and

incorrect floorplans. These findings suggest that architectural complexity

alone may not be insufficient to overcome the limitations of current data-

driven models in capturing signal propagation.
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Figure A.2: RSSI predictions using a Dense Prediction Transformer. Top
row is the VQ-VAE reconstructed flooplans, second row is the transmitter,
third row is the receiver binary mask, and the last two rows show the
ground truth and predicted RSSI results.
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APPENDIX B

NERFMAP

B.1 Evaluation on Additional Floorplans

We evaluate NeRFMap on additional floorplans to demonstrate its generaliza-

tion capabilities. Figure B.1 shows the performanace on realistic apartment

layouts. We note that while NeRF2 is unable to predcit any reasonable floor-

plan, Heatmap Segmentationś shape is limited by the (convex hull of the)

trajectory data (see bottom left of the second row, first column). Addition-

ally, it fails to capture critical details, such as door openings. The fourth

and fifth rows show floorplans by our proposed models NeRFMap LoS and

NeRFMap. NeRFMap LoS captures the rough shape of the floorplan, especially

the interior walls, while NeRFMap further improves these walls by adjusting

their thickness and accurately correcting their shape. NeRFMap also correctly

identifies the floorplan boundary, as evidenced in the last column, where the

exact boundary is captured just from the reflections. To understand the sig-

nal propagation captured by NeRFMap, we place one Tx in each floor plan

randomly (that is not present in the training data) and evaluate the signal

power at discrete receivers. These Rx s are placed on a 2D grid at equal

intervals and the predicted signal power is converted into a heatmap. The

bottom row shows these inferred signal power heatmaps with the brightest

point indicating the Tx location (as the Rx closest to the Tx receives the

highest power). NeRFMap is not only able to predict the signals well across

the floorplan, but also capture the propagation paths i.e., LoS signal and the

first-order reflections. For instance, in the first column, the left portion of

the center hall receives power only due to the wall reflection from the left

wall.
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Figure B.2 shows the performanace on ZIND floorplans. The fourth and

fifth rows show floorplans by our proposed models NeRFMap LoS and NeRFMap

with clearly identified walls and boundaries. The bottom row shows inferred

signal power heatmaps demonstrating NeRFMap’s capability to learn accurate

signal propagation.

Ground
Truth

Heatmap

Seg.

NeRF2

NeRFMap

LoS

NeRFMap

NeRFMap

Signal
Predic-

tion

Figure B.1: Qualitative comparison of Ground Truth floorplans against
those inferred by baselines Heatmap Segmentation and NeRF2
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Figure B.2: Additional qualitative comparisons of Ground Truth floorplans
against those inferred by baselines Heatmap Segmentation and NeRF2
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