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ABSTRACT

Neural Radiance Fields (NeRFs) have been remarkably successful at synthe-
sizing novel views of 3D scenes by optimizing a volumetric scene function.
This scene function models how an optical ray accumulates colors on its path
and eventually delivers this color to the camera pixel it impinges upon. Radio
frequency (RF) or audio signals can also be viewed as a vehicle for deliver-
ing information about the environment to a sensor. However, unlike camera
pixels, an RF /audio sensor receives a mixture of signals that contains many
environmental reflections. Is it still possible to infer the environment using
such mixed signals? We show that with redesign, the core NeRF framework
has the potential to solve this inverse problem. We focus on a specific appli-
cation of inferring the indoor floorplan of a home from WiFi measurements
made at multiple locations inside the home. Our inferred floorplans look
promising, and benefit downstream signal prediction applications. Our work

also uncovers a number of problems for continued research.
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CHAPTER 1

INTRODUCTION

Indoor floorplans play a crucial role in a wide range of applications, includ-
ing digital twins, context-aware systems like virtual assistants, indoor nav-
igation, and augmented reality. For instance, virtual assistants can provide
spatially-aware services, such as guiding users to specific rooms or control-
ling devices based on their physical location within a building. Estimating
indoor floorplans has been extensively studied, with many existing solutions
relying on visual sensors like cameras [I], 2, [3, 4, B [6], or LIDARs [7, [§].
These technologies typically require a robot or user to traverse the space,
collecting measurements from the environment to build a map. While these
methods provide accurate results, they come with significant limitations.
Visual sensors can inadvertently capture user-sensitive information, raising
privacy concerns. Additionally, capturing a comprehensive floorplan using
visual data often requires exhaustive measurements, as every wall and corner
of the indoor space must be viewed.

This thesis presents a novel approach to indoor floorplan estimation that
mitigates both privacy and measurement efficiency challenges. More specif-
ically, we are interested in inferring the floorplan of an indoor environment
by measuring wireless signals from a mobile sensor. Using wireless sensing
modalities such as RF or audio signals offers advantages in both the afore-
mentioned challenges. Rich details of the user’s home are not captured with
RF/audio signal measurements (or at least not at the extreme resolution of
visual sensors). Moreover, radio/audio waves propagate through walls, al-
lowing MapFill to operate with fewer measurements — the user does not need
to collect measurements from every room and corner. One could envision
this as a user walking around with a phone in a home; can the phone record
ambient WiF1i signals (or audio music played from loudspeakers) and learn

the home’s floorplan?
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Figure 1.1: Overview of the problem

Figure (1.1} illustrates our “MapFill” ing problem where we observe the sig-
nal power at a series of locations in the environment as our input shown as
a heat map and the output is the floorplan of the environment. This seems
plausible, as the signal that arrives at the phone is a function of the envi-
ronment’s layout, the phone’s location, and the signal propagation model.
Signals passing through walls experience attenuation, and reflected signals
arrive at the receiver with reduced power compared to those traveling via a
direct, unobstructed path. As a result, the received signal at any location
is effectively a summation of multiple components—some traveling directly,
others passing through walls, and yet others arriving after one or more re-
flections. In essence, the spatial layout of the indoor environment shapes the
observed signal. Figure illustrates the signal propagation process in an
indoor floorplan with one transmitter and one receiver. To achieve this, we
provide two solutions, one that invloves learning the underlying signal prop-
agation model implicitly from data and the other where the signal power
is explicitly modeled as a function of the floorplan using Neural Radiance
Fields (NeRFs) [9].

We briefly outline the two approaches in this Chapter. In the following
chapters, we provide an in-depth discussion of these two approaches, with
particular focus on the NeRF-based solution, which we consider the most

innovative contribution of this thesis.

1.1 PhyMap

Floorplans inherently contain structural elements such as walls, doors, and

furniture. These structures directly influence wireless signals, as the received



Figure 1.2: Signal propagation in a floorplan with one transmitter and one
receiver. Direct path is shown in blue line, while the reflected paths are
with black dotted lines.

signals undergo interactions with the environment during propagation. Con-
sequently, estimating floorplans from wireless signals constitutes an inverse
problem, where the forward process describes signal propagation by modeling
signal power as a function of the environment.

In this work, we explore a data-driven approach to establish a mapping be-
tween measured signal power and the corresponding floorplan. Our proposed
model, PhyMap, first learns a compact representation of the environment and
subsequently relates input signal measurements to these learned represen-
tations. Given that limited measurements can lead to multiple plausible
floorplans generating the same signal power, our mapping function is de-
signed to produce a distribution over potential floorplans, thereby capturing
this ambiguity.

The key challenge in this approach is make the mapping function learn
the signal propagation model. While data-driven models excel at capturing
structures in floorplans, directly learning a mapping from the signal power
to the floorplan seems difficult — many functions can generate the same sig-
nal power given the limited number of measurements. To overcome this
limitation, PhyMap incorporates a learnable physics-based model, PhyModel,
which approximates the forward signal propagation process. Once learned,
PhyModel facilitates physically-informed guidance to the inverse mapping
function, ensuring that the generated floorplan is consistent with the ob-
served signal power. Moreover, PhyModel is fully differentiable, enabling its

integration into a test-time optimization framework and downstream tasks,



such as signal prediction.

Our physics-based model PhyModel requires the transmitter’s location, re-
ceiver locations, and the environmental floorplan as inputs to predict the sig-
nal power at the receiver locations. However, since no prior knowledge about
the transmitter’s location is assumed, we design PhyMap to jointly estimate
the transmitter location as part of the floorplan estimation process. Further
details regarding PhyMap and PhyModel are discussed in Chapter 4l However,
our experiments reveal that relying solely on the physics model PhyModel is
insufficient for accurately solving the inverse problem. Specifically, certain
floorplans may better fit the observed signal power than the actual floorplan,
indicating that PhyModel does not perfectly capture the true underlying ray
tracing dynamics. Consequently, while PhyModel demonstrates potential for
modeling signal propagation with good performanace, it alone cannot reli-
ably guide the inverse mapping function towards learning the true floorplan.
Thus, explicit modeling of signal propagation is essential to solve the inverse

problem, laying the foundation for our NeRF-based approach.

1.2 NeRFMap

Our second approach to “MapFill” problem builds on the idea of Neural Ra-
diance Fields (NeRF's), and using them to implicitly learn the floorplan from
wireless signals. We view our NeRF-based solution as the main contribution
of this thesis and spend most of the thesis discussing this approach.

NeRFs [9] 10, 11} T2] have delivered impressive results in solving inverse
problems, resulting in 3D scene rendering. While NeRF's have mostly used
pictures (from cameras or LIDARSs) to infer a 3D scene, we ask if the core
ideas can generalize to the case of wireless signals as well (such as RF or
audio). Generalizing optical NeRFs to wireless sensing seems plausible since
wireless measurements are just observations from inside the scene, while
NeRF images are typically taken from the outside. A growing body of work
[13), 14], [15], 16, 17, 18] is investigating this connection between NeRF's and
wireless. While none have predicted floorplans, NeRF2 [I5] and NeWRF [16]
have adopted NeRF's to predict WiFi signals at different locations inside an
indoor space. However, we find that such predictions can be successful with-

out necessarily solving the floorplan inference problem. In other words, it is
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Figure 1.3: Overview: (a) User’s device measures wireless signal power. (b)
Transmitted signals arrive at the device along a line of sight (LoS) path and
after reflections from surrounding walls. (¢) Our LoS model estimates crude
walls. (d) Our first-order reflection model refines the inner and outer walls.
(e) Together, the floorplan is estimated which can then be used to predict
signals at new locations.

possible to learn an implicit representation of the scene that does not align
with signal propagation models. Our goal is to design an objective function
that models indoor signal propagation and, in turn, trains the NeRF to learn
the environment’s floorplan. Once learnt, the floorplan can be utilized for
various downstream tasks, such as signal prediction or basic ray tracing.

In our model, each NeRF voxel is defined by its opacity ¢ € [0, 1] and ori-
entation w € [—m, w]. When trained perfectly, free-space air voxels should be
transparent (6 = 0), wall voxels should be opaque (6 = 1), and each opaque
voxel’s orientation should match its wall’s orientation. As measurements, we
use the received signal power, easily available from any receiver’s hardware.
Thus, the input to our NeRFMap model is the transmitter (7'z) location, a
sequence of known receiver (Rz) locations, and the signal power measured
at each Rz location (Figure [1.3(a)). The output of NeRFMap is an (implic-
itly learnt) floorplan of the indoor environment. We expect to visualize the
floorplan by plotting the learnt voxel opacities.

The key challenge in learning floorplans is in modeling the correct reflec-
tions since these reflections help reveal where the walls are. However, without
knowledge of the walls, the reflections are not easy to model, leading to a type
of chicken and egg problem. Additionally, the number of wireless measure-
ments are relatively sparse since we envision users walking around with their
phones only for a few minutes. Finally, measured signals will have “blind
spots”, meaning that rays that bounced off certain regions of the walls may
not have arrived at any of the Rx locations. This leaves gaps or holes in the

floorplan and NeRF’s interpolation through these gaps will produce error or

blur.



NeRFMap approaches this problem by modeling the received signal power
as a sum of the line of sight (LoS) power and the power from first-order
reflections (Figure[1.3|b)). The LoS model is inherited from classical NeRFs.
The main departure from past work is in modeling the reflections. Since
opaque voxels are unknown during training, the reflection surfaces are not
known; hence, the reflection power at the Rx is modeled as an aggregate
over all plausible reflections. Fortunately, for a given (T'z, Rx) pair, the
voxels that can cause reflections lie on a geometric manifold (under reasonable
assumptions), reducing the plausible set. The reflections are aggregated over
this set to finally model the total (LoS + reflection) power.

NeRFMap trains to minimize the loss between the total and measured power
across all Rx locations, and in the process, learns the voxel’s opacities that
best explain the measured dataset. To cope with sparse measurements, regu-
larizations are added to enforce smoothness among local voxels; a penalty is
imposed to prevent learning multiple reflections from one manifold. Lastly,
NeRFMap freezes the LoS model once it converges (Figure[1.3](c)), and uses this
intermediate state to partly supervise the reflection model (Figure [1.3|(d)).

To evaluate NeRFMap, we train on 2.4 GHz WiFi measurements from NVIDIA’s
Sionna simulator [19], with floorplans from the Zillow’s Indoor Dataset (ZIND)
[20]. Results show consistent improvement over baselines in terms of the esti-
mated floorplan’s [oU and F1 score. Qualitative results show visually legible
floorplans without any post-processing. As a derivative of the floorplan,
NeRFMap can compute the received signal power for new (T'z, Rz) locations
(outperforming existing baselines), and also shows basic ray tracing to ex-

plain this power, offering interpretability to its predictions.

The remainder of the thesis is organized as follows: In Chapter 2, we review
the necessary background. In Chapter 3, we discuss the related work. In
Chapter 4, we discuss the PhyMap and PhyModel framework, followed by the
results, challenges and discussion. In Chapter 5, we present the NeRF-based
solution NeRFMap. In chapter 6, we show experimental results of NeRFMap
with baselines, few downstream applications, and limitations. Finally, we

conclude the thesis in Chapter 7.



CHAPTER 2

BACKGROUND

2.1 Channel Impulse Response

When a wireless signal propagates, it is typically influenced by multipath
effects such as reflections and scattering, as well as attenuation caused by
the surrounding environment—collectively referred to as the channel. The
overall impact of these phenomena on the signal is characterized by a linear
model known as the Channel Impulse Response (CIR) [21].
Mathematically, the CIR is expressed as a sum of scaled and delayed im-

pulses as shown in Equation ([2.1]).

mazzijaﬂMw@—qg, (2.1)

where NN is the number of multipath components, «; denotes the amplitude
(attenuation factor) of the i-th path, ¢; represents the phase shift of the i-th
path, and 7; is the delay of the i-th path.

For an input signal z(¢) transmitted through the channel h(t), the output

signal measured at Rz, y(t) is obtained by the convolution:
y(t) = z(t) = h(t) + n(t), (2.2)

where n(t) represents additive noise. For a simple two-path channel with a
line of sight (LoS) path and one reflected path, the CIR h(t) is given as

h(t) = a16(t) + ane?®5(t — 1), (2.3)



The received signal y(t) would then be:
y(t) = z(t) * [a10(t) + a2e?®5(t — 1)] + n(t) (2.4)

In a complex indoor environment, the number of multipath components N
increases significantly due to multiple reflections, diffractions, and scattering
caused by walls, furniture, and other obstacles. Each path differs in ampli-
tude, delay, and phase, resulting in a CIR that encodes information about
the spatial geometry of the environment.

To analyize the received signal strength at a particular location, the total
received power is typically considered, computed as the squared magnitude
of the CIR:

Precv = ‘h<t)’2 (25)

The relative signal strength indicator (RSSI) is a common metric used to
quantify this power, which is often expressed in decibels (dBm). The RSSI

can be calculated as:

These scalar power values P, and RSSI, derived from the CIR and used
interchangeably, serve as the input measurements in our work for inferring

the indoor floorplan.

2.2 Neural Radiance Fields

Neural Radiance Fields (NeRF)[9] is a method for synthesizing novel views
of complex scenes by learning a continuous volumetric scene function from
a set of posed images. The scene function takes a 3D spatial coordinate
and a viewing direction as input and outputs the radiance and opacity at
that point. NeRFs is trained by optimizing the weights of a neural network
to minimize the error between the rendered images and the ground truth
views. Once trained, the NeRF can be used to render novel viewpoints of
the scene by querying the scene function at different 3D coordinates and

viewing directions.



More formally, the color observed along a camera ray r(t) = o + td is

computed using the volume rendering equation:

C(r) :/tfT(t)a(r(t))c(r(t),d)dt, (2.7)

where o is the volume density, ¢ is the emitted color, and T'(¢) is the accu-
mulated transmittance along the ray.
To make the integral tractable, NeRF employs a quadrature approximation

from [22], allowing the integral to be approximated as:

N i—1
C(r)= ZTZ' (1 —exp(—0:0;)) ¢;, where T; =exp (— Zaj(Sj) , (2.8)
i=1 j=1

and 0; = t;11 — t; is the distance between adjacent sample points along the
ray. NeRF is tasked to learn the volume density o; and color ¢; at any sample

point r(¢;) along a ray and is trained using the following loss function:

2

: (2.9)

2

=% Hé(r) Welts

where C/(r) is the predicted color and C(r) is the ground truth color along
ray r. In practice, NeRF uses two networks—a coarse network to estimate a
rough global structure of the scene, and a fine network that focuses on higher-
resolution details by sampling more densely in regions of interest identified

by the coarse model.



CHAPTER 3

RELATED WORK

3.1  Wireless (WiFi) channel prediction using NeRF's

NeWRF[16] and NeRF2[I5] are recent papers that have used NeRFs to predict
the wireless channel impulse response (CIR) [23] at unknown locations in-
side a room. Drawing a parallel to optical NeRFs, a voxel’s color in optics
becomes a voxel’s transmit power in wireless. The voxel’s density in optics
remains the same in wireless, modeling how that voxel attenuates signals
passing through it. NeRF2 and NeWRF learn to assign transmit power and
attenuation to each vozel such that the measured CIR is matched (i.e., L loss
minimized) over training locations inside a room. The authors explain that
voxels assigned non-zero transmit power will be called virtual transmitters,
and will model the reflections in the environment. However, many assign-
ments are possible that fit the CIR training data, especially when the data is
sparse (Figure illustrates two possible assignments). While the predicted
CIRs could achieve low error for all such assignments, only one of the as-
signments will model the true reflections, forcing the virtual transmitters to
be located on the wall surfaces (Figure [3.1[(b)). We have plotted NeRF2 and
NeWRF’s assignment of voxel densities (see Figure [3.1c,d)) to confirm that
their high accuracy in CIR prediction is not an outcome of correctly learning
the wall layout. NeRFMap’s goal is to assign the voxel densities correctly using

the simple NeRF framework, which should naturally yield the floorplan.

3.2 Neural radiance fields for audio

Another exciting line of research focuses on predicting room impulse response
(RIR) for audio [17, 24] 18, 25]. Neural Acoustic Field (NAF) [17] extended

10
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Figure 3.1: (a) Fitting signal power using virtual T'zs. (b) Ideally, virtual
Tzs should be located on wall surfaces. (c¢) Sparse virtual T'xs learnt by
NeWRF shown in black/gray dots. (d) Dense virtual T'zs learnt by NeRF2.
Neither correspond to the true floorplan (shown in red).

the classical NeRF to train on RIR measurements in a room and predict
the RIR (magnitude and phase) at new (T'z, Rx) locations. NAF identi-
fied the possibility of overfitting to the RIR and proposed to learn, jointly,
the local geometric features of the environment (as spatial latents) and the
NAF parameters. The spatial latents embed floorplan information, but a de-
coder needs to be trained using the partial floorplan data. NeRFMap requires
no floorplan supervision, and secondly, relies entirely on signal power (less
informative than RIR) to estimate the floorplan.

Follow up works have focused more on improving the RIR accuracy and
have utilized explicit information about the surrounding, namely pictures
[26], 24, [18], 27], LIDAR scans [28], or optical NeRFs [25], to better guide
their MLPs. RIR prediction results are steadily improving; however, this
sequence of ideas is veering away from the inverse nature of the problem.

Our goal is to first invert the signal power to a floorplan, which can then
enable CIR/RIR predictions.

11



3.3  Modeling reflections in optical NeRF's

Optical NeRFs have tackled reflections [29] [30), B1] for synthesizing glossy
surfaces and mirrors, and for re-lighting [32, 33]. NeRFRen [34] proposes
to decompose a viewed image into a transmitted and a reflected component.
To synthesize novel views, the two component images (learnt by separated
branches of the MLP) are added with learnt weights to appropriately sup-
press the reflected component. Ref-NeRF [35] also focuses on reflections
through a similar decomposition of the transmitted and reflected color, how-
ever, the reflected color is modeled as a function of the viewing angle and
the normal to the surface, resulting in accurate models of specular reflec-
tion. Several other papers have developed similar ideas [36] 37] and the
core insight centers around solving a 2-component decomposition problem.
NeRFMap faces the challenge of not knowing the number of rays adding up
from all possible directions in the environment. Hence, NeRFMap must solve
a many-component decomposition problem using the physics of signal prop-

agation (an RF specific opportunity).

3.4 Floorplan Estimation

Finally, floorplan estimation, as a technology, has matured significantly with
RGBD cameras [38], [T}, 2], B, 4, 6], LIDARs [7, 8], and even smartphone cam-
eras (in Apple’'s ARKit) [39]. Early methods focused on hand-crafted ge-
ometric features and layout priors [40, 41l 38, 42], leveraging cues such as
vanishing points, edge maps, and planar surfaces to infer room structures.
More recent approaches have shifted toward deep learning-based techniques,
using neural networks to directly predict layouts. Some of these method use
visual data for segmentation [5], layout regression [3| [1], while others lever-
age panoromic images [2, 4] and 3D point clouds [43], 44] to perform similar
tasks. However, using visual sensors indoors can be invasive to the user’s
privacy; PhyMap and NeRFMap aims to infer floorplans through less invasive
RF signals. More importantly, for NeRFMap, we are keen on helping NeRFs
learn wireless signal propagation, especially first-order reflections; floorplan

estimation is one application of this learning exercise.
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CHAPTER 4

PHYMAP

4.1 Setup and Overview

We aim to infer a 2D floorplan from WiFi measurements of received signal
strength indicator (RSSI) at various locations within an indoor environment.
Let ¢ be a binary matrix of size L x L, representing the indoor floorplan,
where L is the maximum length of the floorplan. The training data consists
of WiFi RSSI measurements {¢)(Rx;)} at a set of receiver locations { Rz;},
corresponding to various trajectory locations traversed by the user. Note
that we do not assume the locations of the (fixed) transmitter Tz, in fact,
PhyMap is designed to predict the transmitter location as well. The goal is
to learn a model that can map these measurements to the 2D floorplan ¢.
The signal power 1), received by a receiver Rz (with the subscripts omitted

for generality), can be modeled as:

¢ = ¢LOS + ,lvbrefl + -+ wrefn

where ¢1,s is the power from the direct line-of-sight (LoS) path, and ¥g.,
is the aggregate power from all k' order reflections (i.e., all signal paths that
underwent exactly k reflections before arriving at the Rx). We ignore the
effects of diffraction and scattering in this work. We assume that the RSSI
at location Rz is independent of time and is only a function of the obstacles,
the transmitter, and the receiver. Additionally, to leverage the inherent
inductive biases through convolutions, we convert these receiver locations
{Rz;} and measurements {t)(Rxz;)} into 2D matrices R and ¥, respectively.
To summarize, the task is then to map the WiFi measurements ¥ to the 2D
floorplan ¢ through a learning model.

Given the complexity of high-dimensional floorplan images, we first project

13



these images onto a lower-dimensional latent space. These latent represen-
tations capture the critical features of indoor layouts and are subsequently
utilized to map received RSSI measurements to feasible floorplans. Since
multiple distinct floorplans can produce nearly identical WiFi RSSI measure-
ments, especially when the number of measurements is limited, identifying
a unique floorplan is challenging. Additionally, minor structural changes,
such as adding or removing a wall far from the transmitter, can often lead
to negligible variations in signal strength, necessitating a model capable of
generating multiple plausible floorplans.

In PhyMap, we train a model that maps RSSI data onto this lower-dimensional
latent representation space. This involves learning a direct relationship be-
tween observed RSSI values at receiver locations and the corresponding floor-
plan latents. In order to map to multiple floorplans that can explain the
same set of RSSI measurements, we design the mapping to learn a distribu-
tion over the floorplan latents that we can sample from. To accommodate
multiple floorplans consistent with the same RSSI measurements, we design
this mapping to learn a distribution over the latent space, enabling sam-
pling of diverse plausible floorplans. Although the model can infer floorplans
upon training, verifying the accuracy of these inferred floorplans, especially
in real-world scenarios, remains challenging. To mitigate this, we introduce
an additional physics-based model, PhyModel, specifically designed to model
physical wave propagation. That is, our PhyModel is tasked with predicting
RSSI values from a given floorplan, receiver trajectories, and transmitter lo-
cations. Once trained, this physics-based model serves as guidance to refine
latent representations during the PhyMap’s training phase. An ideal PhyModel
should accurately model the physics of wave propagation in the environment,
which would effectively resolve the ambiguity in the inverse problem by fully
explaining the observed measurements. Since PhyModel is differentiable af-
ter training, we can optimize the floorplan latents even at inference time to
identify the floorplan that best aligns with actual measurements, enabling

PhyMap to support test-time optimization.
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4.2 Encoding Floorplans

Indoor environments are inherently complex, often cluttered with walls, fur-
niture, and other obstacles. Generating accurate floorplan images in high-
dimensional space is computationally challenging, and the ambiguity arises
when multiple floorplans can match the input set of WiFi RSSI measure-
ments. To address this, our approach focuses on projecting the high-dimensional
floorplan into lower-dimensional latent representations that is equipped with
the ability to sample these multiple floorplans. To this end, we propose us-
ing the Vector Quantized-Variational AutoEncoder (VQ-VAE) [45] to encode
the floorplan into a latent space. Given a set of floorplans ®, we begin by
encoding each floorplan ¢ € ® onto a lower-dimensional latent space using
an encoder F,. Every floor plan ¢ is represented via a subset of a discrete
codebook of vectors. Specifically, let ¢, € R? be a latent vector, and let
C € R¥*4 denote a shared embedding matrix of K such latent vectors. The
floorplan ¢ is first passed through the encoder E; to obtain a continuous
latent representation, Ey(¢) € R"**“*4 <which results in h X w vectors in the
latent space. Each latent vector z.(j) € F1(¢) is then discretized by finding

its nearest neighbor from the codebook in the following manner:

) = e where k= argmin [l2.(7) ~ eills V2() € Er(9)
ke{l,..,.K}
Both the codebook and the encoder-decoder are learned together during the
training process and the gradient non-differentiability that happens due to
quantization is approximated with a simple straight-through gradient. The
discretized vectors z,(j),j = {1,...,h X w} are then sent to a decoder D; to
reconstruct ¢, and the model is trained using the reconstruction loss along
with two latent losses to ensure both the codebook and the encoder’s outputs

snap into each other simultaneously. Once trained, we freeze the encoder F,
decoder Dy, and the codebook C'. Figure represents the VQ-VAE model.

4.3 Method

Floorplans and RSSI measurements are two different representations of the

same underlying environment, where the RSSI measurements directly stem
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Figure 4.1: VQ-VAE model showing the codebook indices

from the floorplan in which they are measured. For example, recording WiFi
measurements and audio measurements in the same floorplan are both obser-
vations from the physical space, where RF and audio wave propagation occur
within the same environment. These two modalities, though different in na-
ture—one focusing on radio frequencies and the other on sound—are both
influenced by the same latent factors, such as the layout of walls, furniture,
and obstacles. So once we obtain the latent representation of the floorplans,
we utilize an additional encoder, Es, to project the input WiFi RSSI ma-
trix R onto the latent space of the floorplans. More specifically, E, outputs
a softmax probability distribution over the codebook elements c;. The en-
coder’s output is then represented as Ey(V) € R"™*“*K where K denotes the
number of codebook elements. This step allows us to map the received WiFi
measurements onto the distribution of discrete floorplan latents. We note
that this representation of Fy allows us to sample multiple floorplans that
we can decode by first sampling from the softmax probabilities, and using
the trained decoder D; and codebook C.

We train the encoder Fs using supervision. Additionally, the encoder is
tasked with predicting the transmitter’s (7'z) location within the floorplan.
This prediction is essential, as detailed in the subsequent section. We define

the effective loss function £ as follows:

L="Ly+ MNLwip; (4.1)

where L4 is the loss for snapping onto the codebook indices, Ly;p; is the
error in T'x’s location, and A; is a hyperparameter. By optimizing the loss
function £, we obtain estimates of the floorplan through training encoder

E5. This involves sampling the set of argmax indices for each latent dimen-
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sion j € {1,...,h X w}, retrieving the corresponding latent vectors from
the codebook C' to form Z, € R"**4 and decoding the estimated floor-
plan ¢ through the decoder D; as ¢ = Di(Z,). However, we observe that
the resulting floorplan estimates may not always accurately reflect the true
environmental layout (see details in Figure in Section . Moreover,
without additional supervision or explicit constraints on the encoder Ejs, the
model can adapt to fit any arbitrary function that minimizes the error, po-
tentially leading to overfitting. This situation can lead to a model that fails
to capture the forward propagation process i.e., the physical ray-tracing in-
teractions inherent to the environment. To mitigate this, we introduce a
separate physics-informed model, denoted as PhyModel, designed to guide

encoder Fy toward predicting more physically accurate floorplans.

4.4 PhyModel

¢ 1] PhyModel
- X
e ¥
= :
> —> Ph L
y A 3
R "'ﬁphy

Figure 4.2: PhyMap model architecture

The core idea behind the PhyModel is to design a module that understands
the physics of wave propagation, including modeling line-of-sight attenuation,
reflection across wall surfaces. This physics-informed understanding is then

used to guide the encoder Fs in solving the true inverse problem: inferring
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more accurate floorplans. Ideally, if one had access to a differentiable emula-
tor that accurately mirrors the forward signal propagation—including both
penetration and reflection effects—and supports backpropagation, it could
be used to refine the floorplan estimate gZA> Such an emulator would take the
current estimate qg and the ground truth transmitter location Tx as inputs
(assuming the oracle has access to the ground truth 7T'z), and output the
predicted RSSI values at receiver locations. The resulting gradients could
then be propagated back through the encoder F, to iteratively minimize
the RSSI prediction error. However, access to such an oracle that supports
differentiable ray tracing and knowledge of the transmitter’s location is not
feasible in practice. As a result, we pursue an alternative approach: training
a model end-to-end without relying on explicit ray tracing. The goal of our
PhyModel is to predict RSSI values at the receiver locations given the floor-
plan and transmitter location. We train the PhyModel using the following

loss function:
['phy = ||l1] - qj“% (4-2)

where A\, Ay are hyperparameters.

Intuitively, PhyModel can be interpreted as a discriminator, analogous to
the critic in Wasserstein GANs [46]. Rather than merely assessing whether
the predicted floorplan ngS resembles the actual floorplan ¢, it evaluates how
well the prediction aligns with the underlying RSSI measurements. We also
note that given a floorplan and transmitter location, every point within the
environment implicitly defines an RSSI value, whether observed or not. In
this setup, receiver locations serve as evaluation points for a spatial RSSI
function conditioned on the floorplan and transmitter location. Thus, RSSI
values corresponding to different receiver trajectories can be derived by ap-
plying relevant spatial masks to this continuous function. So our input to
PhyModel comprises the floorplan and transmitter location, and the model
outputs the RSSI values at all potential receiver positions. Once this physi-
cal model is trained, specific receiver locations query the predicted RSSI field
using a binary mask, extracting the expected RSSI values for those positions
of interest. We present two variants of the PhyModel model: one based on
a ResNet architecture [47] and another utilizing a Transformer architecture
[48].
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Figure represents our PhyMap model. Thus, the loss function for training
the PhyMap model is given by:
L=Ly+ MLwiri + XoLphy (4.3)

where A\, Ay are hyperparameters.

4.4.1 Estimating Tz

PhyModel requires the transmitter location as an input along with the floor-
plan to predict the RSSI values any receiver location. However, during test
time, the true transmitter location is not available. To address this, we
predict the transmitter location during training as a distribution over the
floorplan using the encoder F,;. We then sample from this distribution to
obtain a single point as the estimated transmitter location. To allow gradi-
ents to propagate through this sampling step, we utilize the Gumbel-softmax
operation [49], which approximates the non-differentiable argmax with a dif-

ferentiable alternative through a temperature controlled softmax function.

See Figure [£.2]

4.5 Test Time Optimization

Once PhyMap is trained, it can be used to infer the floorplan given the WiFi
measurements. Since PhyMap is capable of generating multiple plausible
floorplans, we can sample a set of candidates floorplans and evaluate them
against the measurements using the pretrained PhyModel. Additionally, one
can also perform test-time optimization by refining the predicted floorplan
through backpropagation, minimizing the loss in [4.2] assuming backpropaga-
tion through the PhyModel is feasible at test time. This is achieved by first
freezing the PhyModel, and then optimizing the encoder E5 to minimize the
RSSI reconstruction loss in with respect to the predicted floorplan ¢.
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4.6 Implementation Details

In this section, we provide an overview of the training pipeline and the key
design choices underlying our implementation. The training process involves
three main stages: (1) pretraining the VQ-VAE model, (2) training the
PhyModel to predict RSSI values, and (3) training the final PhyMap model to
predict the floorplan from RSSI measurements.

We assume the floorplan is of an unknown shape inside a 256 x 256 grid.
No assumptions are made regarding the trajectory lengths taken by users
collecting the RSSI measurements. Trajectories are collected using the as-
tar algorithm [50] to simulate a walking trajectory that traverses all rooms.
Throughout all stages, we use the Adam optimizer [51] with a learning rate
of 1074, a batch size of 32, weight decay of 10~*. All models are implemented
in PyTorch and trained on NVIDIA A100 GPUs.

4.6.1 Pretraining VQ-VAE

In the first stage, we train the VQ-VAE to encode floorplan images {¢} into
a discrete latent space. We use a codebook of size 128 and set the latent
dimension to 20. Results and ablations are in Section [£.7 The VQ-VAE is
optimized to reconstruct input floorplans along with a codebook loss (to train
the codebook) and a commitment loss (to ensure the encoder’s output snaps
to the codebook). To address the non-differentiability of the quantization
step, we use the straight-through estimator [52] to allow gradient flow during

training.

4.6.2 PhyModel Training

The second stage involves training PhyModel, which learns to predict the
RSSI values given a floorplan and transmitter location at the receiver loca-
tions. As mentioned previoisly in Section [4.4] rather than restricting pre-
dictions to receiver locations alone, we predict the RSSI field across the
entire floorplan. This dense prediction strategy stabilizes training by captur-
ing the overall spatial structure of signal propagation and makes the RSSI

field smoother. To maintain differentiability, we sample from the latent space
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using Gumbel-softmax, enabling gradients to pass through the otherwise dis-

crete latent selections.

4.6.3 'Training PhyMap

In the final stage, we train PhyMap by optimizing the encoder F5 to map
RSSI measurements to the corresponding latent floorplan representations.

We choose A\; = 0.1 and Ay = 1 for our training.

4.7 Results

Floor plan and Trajectory. Floorplans are drawn from the HouseExpo
[53], a large-scale dataset of indoor layouts derived from the SUNCG dataset
[54]. We also generate synthetic floorplans from apartment layouts and a
few layouts with random objects placed inside a room with an outer corridor.
Figure[4.3|and [.4]show the synthetic and HouseExpo floorplans, respectively.
In each floorplan, an A* algorithm [50] is employed to simulate a walking
trajectory that traverses all rooms. We pick a random start and end point
in each room and connect them using the A* algorithm. This trajectory
simulates the path of a user walking while collecting WiFi measurements on
a mobile device.

Wireless Simulation Dataset. We utilize the NVIDIA Sionna RT [55] [19],
a differentiable ray tracer for radio propagation modeling, as the platform to
compute the ground truth signal power (also known as received signal strength
index (RSSI)). A transmitter (7z) is randomly placed within the floorplan,
and omnidirectional transmissions are simulated at a frequency of 2.4 GHz.

For receiver locations, we sample the user trajectory at a fixed time interval
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Figure 4.4: HouseExpo floor plans
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Figure 4.3: synthetic floor
plans
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to obtain R = {Rz;} at N Rz locations. We shoot 107 rays into the given
floorplan and consider only the rays that reach the receiver location within
5 bounces (i.e., up to 5Sth-order reflections); others attenuate excessively and
are negligible. The default materials for the walls are used in the simulation.
As with most WiFi simulators, Sionna does not model signal penetration
through walls — this means that a Tz and Rz located on opposite sides of a
wall will not receive any line of sight signal. Using Sionna, we obtain signal
power matrix U = {¢(Rz)} by inputting (¢, Tz,R). In total, we collect
roughly 100,000 samples for training and 10,000 samples for testing.

Metrics. We evaluate using 3 metrics:

B Mean Square Error (MSE): This metric measures the average squared
difference between the predicted and true floorplan images.

B Intersection over Union (IoU) [56]: This metric measures the degree
to which the predicted empty regions (non-walls) and the true empty regions
(non-walls) superimpose over each other in the 2D floorplan. The following

equation defines the metric:

EPNEP*

U= 5p0Ep

where E'P denotes the set of predicted empty white pixels and W P* denotes
the true empty white pixels. We note that this is a simpler metric compared
to the Wall_IoU metric defined in Chapter 5.

B F1 score [57]: Defined as F'1 = 2525 where P is the precision and R is
the recall of the bitmap. P and R are defined based on wall pixels, similar

as above.

471 VQ-VAE

Figure 4.5 shows the results of the VQ-VAE models for syntheic and House-
Expo floorplans with the codebook size 128 and the latent dimension of 20.
The [ parameter for the commitment loss is set to 0.1. Ablatoins are per-
formed on the codebook size, latent dimension, and the § parameter (see
Table [4.1). We also train a vanilla Variational AutoEncoder (VAE) model
with a latent dimension of 1000 and 2000 and compare it with the VQ-VAE
model. VQ-VAE is able to reconstruct the floorplans better than the VAE
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model. The best model is able to reconstruct the floorplan with an MSE of
0.0047, an IoU of 0.94, and an F1 score of 0.97.
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Figure 4.5: VQ-VAE model on syntheic floorplans: On the top is the
predicted truth floorplan, at the bottom is the ground floorplan.

Table 4.1: Comparison of MSE, IoU, and Dice Coefficient for VQ-VAE and
VAE models.

Method MSE IoU | F1 Score
VQ-VAE:
codebook size = 32 x 5, f =0.25 0.0083 | 0.9015 0.9482
codebook size = 128 x 20, 5 =0.25 | 0.0069 | 0.9169 0.9567
codebook size = 128 x 20, =1 0.0066 | 0.9203 0.9585
codebook size = 128 x 20, 5 = 0.1 0.0047 | 0.9418 | 0.9700
codebook size = 128 x 20, # = 1000 | 0.0877 | 0.2869 0.4458
VAE:

latent dim = 1000 0.0062 | 0.9221 0.9595
latent dim = 2000 0.0062 | 0.9200 0.9584
4.7.2 PhyMap

Figure illustrates the performance of PhyMap when trained without the
assistance of the physics-based model [4.6f While the model successfully cap-
tures key structures such as corridors, door openings, and few wall segments,
it fails to recover the entire floorplan accurately. This limitation arises from
directly mapping RSSI measurements to a floorplan without incorporating
physical constraints. As a result, the model occasionally introduces artifacts
in open spaces that do not intersect receiver trajectories, as seen in the third

column of Figure 4.6}
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Figure 4.6: PhyMap results on synthetic floorplans optimizing L in , ie.,
without guidance from PhyModel.

4.7.3 PhyModel

We implement PhyModel using a ResNet50 architecture [47]. The model
is trained to predict the RSSI field across the entire floorplan, conditioned
on the floorplan layout ¢ and the transmitter location Tx provided as bi-
nary masks. Predicted RSSI values are then masked using receiver location
maps R to compute the training loss. Figure shows the predicted RSSI
maps by PhyModel on synthetic layouts. The results demonstrate that the
model is able to predict RSSI at the receiver locations accurately (fourth
row) comparable to the ground truth (third row). The last row also show-
cases model’s understanding of line-of-sight propagation and attenuation due
to obstructions such as signals on the opposite sides of a wall varying vastly.
Additionally, inverse square law behavior is captured as circular attenuation
patterns radiating from the transmitter location. Some reflected signal paths
are also visible, for example, in the top corridor of the second column, where
signals reflect and decay smoothly, although the direct path is blocked by the
corridor wall. PhyModel achieves a mean squared error (MSE) of 5.18 dB in
RSSI prediction.

With PhyModel trained, we train PhyMap using the composite loss function
in Equation . Figure presents the resulting floorplan predictions.
Compared to the model trained without PhyModel as seen in Figure [4.6|

24



5\ <\ ; E -\
Dy Dy v r 5 o
X< B XA . “ om oy

e |

Figure 4.7: PhyMap results on synthetic floorplans. Each floorplan has two
colunmns: the first column shows results on the predicted floorplan from
the VQ-VAE stage and second column is the ground truth floorplan. First
row is the ground truth floorplan, second row is the transmitter’s location,
third row is the receivers locations, fourth row is ground truth RSSI values,
fifth row is the predicted RSSI values, and the last row is the predicted
RSSI field. Darker red indicates stronger signal, and blue indicates weaker
signal.
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we observe improved structural consistency and reduced artifacts. Quantita-
tively, incorporating PhyModel leads to a 4% improvement in IoU and a 2.1%
boost in F1 score (Table . Though the gain may appear modest, the IoU
metric tends to favor large empty regions, which both models handle well.
Observe that there are still few missing and extra walls in the predicted
floorplan, for examnpole, the last two columns. We can improve on these re-
sults by performing test-time optimization using the PhyModel to refine the
predicted floorplan as discuessed in Section 4.5 Figure visualizes this
refinement process, where an initial floorplan prediction gz%start is improved by
minimizing the RSSI error via backpropagation using PhyModel. The opti-
mized floorplan QASend exhibits stronger alignment with the ground truth. For
example, the small horizontal wall in the first column of gzgstart is adjusted
to match the actual layout by making it vertical. The model is also able
to resolve gaps (third column) and add missing partitions (fifth and sixth
columns). Correspondingly, the predicted RSSI maps W.,q more closely re-
semble the ground truth ¥ (compare third and fifth rows with the first row).
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Figure 4.8: PhyMap results on synthetic floorplans when trained with
PhyModel, optimizing Equation (4.3]). Top row is the input RSSI
measurements, second row is the ground truth floorplan, third row is the

predicted RSSI values, and the last row is the predicted floorplan.

Table 4.2: Comparison of loU and F1 Score for the models with and

without PhyModel.

Method IoU | F1 Score
No PhyModel 4.1/] 0.852 |  0.893
PhyMap [4.3] 0.886 | 0.912

4.8 Discussion

While the previous section demonstrates the promise of PhyMap in predicting
floorplans, we observe that the inclusion of PhyModel does not consistently
improve results across all examples. In particular, PhyModel often fails to
capture the full complexity of the Room Impulse Response (RIR) and phys-
ical propagation effects such as multipath reflections, thereby limiting its
effectiveness in guiding accurate floorplan inference.

Even though PhyModel can predict RSSI values at receiver locations with
reasonable accuracy, we find that some alternative floorplans—distinct from
the ground truth—can yield lower loss values. To illustrate this, Figure 4.10
presents contrastive examples where PhyModel assigns lower error to incorrect
floorplans. Each set of images consists of two columns: the first column
shows the floorplan with the lowest loss as predicted by PhyModel, while

the second column displays the next-best floorplan in terms of loss. In the
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Figure 4.9: PhyMap Test time optimization results on synthetic floorplans
optimizing for floorplan using PhyModel. Top two row shows the input
RSSI measurements and the ground truth flooplans, while the third and
fourth shows the predicted RSSI values and the predicted floorplan at the
start of the optimization. The last two rows show the predicted RSSI values
and the predicted floorplan at the end of the optimization.

first two sets, the floorplan with the lowest loss is identical or very close to
the ground truth layout, making them successful examples. In such cases,
PhyModel can effectively guide PhyMap to converge to the correct floorplan
during optimization. However, the remaining three sets on the right half
illustrate contrastive examples. Here, the floorplan with the lowest loss (first
column) deviates significantly from the ground truth (second column). These
failure cases show that optimizing with PhyModel can guide PhyMap toward
suboptimal or incorrect floorplans.

To improve PhyModel’s predictive capability, we explored two architectural
modifications: a two-component decomposition of the signal power into line-
of-sight and reflected signals, and a Dense Prediction Transformer (DPT)[5§]
model. However, these changes did not yield substantial improvements in the

performance of PhyMap. Details and results of these experiments are provided
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in Appendix [A.T]

Overall, these observations highlight a key limitation: many models can
accurately fit the observed RSSI data, yet they often fail to ensure that the
ground truth floorplan corresponds to the global minimum of the loss func-
tion. This suggests that current data-driven approaches, including PhyModel,
may not be sufficient to resolve ambiguities between multiple plausible floor-
plans. Furthermore, we find that the performance of PhyModel is heavily
dependent on the training data, which raises concerns about its ability to
generalize to diverse layouts or real-world environments, such as those in the
HouseExpo dataset. These limitations lead us to consider a more fundamen-

tal question:

Can we design a model that effectively understands wave propagation phe-

nomena—such as line-of-sight transmission and reflections from walls—in a

manner that accurately infers the underlying environment?

Good Samples Contrastive Samples

Figure 4.10: Contrastive examples of floorplan predictions using PhyModel
in PhyMap.

In the following chapter, we investigate this question through a new ap-
proach based on Neural Radiance Fields (NeRF), which integrates modeling
signal propagation and scene geometry directly into the learning framework

to truly solve the inverse problem of floorplan inference.
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CHAPTER 5

NERFMAP

5.1 Setup and Overview

The signal power 1, received by a receiver Rz, can be modeled as:

¢ - ¢LOS + wrefl + -+ wrefn

where 91,5 is the power from the direct line-of-sight (LoS) path, and g,
is the aggregate power from all k** order reflections (i.e., all signal paths that
underwent exactly k reflections before arriving at the Rx). We move the Rx
to N known locations and measure 1 at each of them. We assume M fixed
transmitters whose locations are also known. Our goal is to accept M x N
measurements as input and output the 2D floor-plan ¢, where ¢ is a binary
matrix of size L x L, where L denotes the maximum length of the floorplan.

We train NeRFMap on the measured data using our proposed multipath
power function as part of the optimization objective. This function models
the LoS and the first-order reflections. Higher order reflections are complex
to model for real floorplans; moreover, they contribute, on average, < 6% of
the total power (see F igure. Hence, we disregard higher order reflections.
The network model we use is a remarkably simple MLP designed to predict
the density d € [0,1] and orientation w € [—m, 7| of a specified voxel in the
indoor scene (see Figure [5.1)). The orientation aids in modeling reflections.
The multipath power function — parameterized by voxel attributes (J,w) and
the (Tx, Rx) locations — models an approximation of the received power v
at that Rz location. Minimizing Ls loss of this power across all Rz loca-
tions trains the MLP. Plotting out all the voxel densities in 2D gives us the

estimated floorplan ¢.

29



0

L

Figure 5.1: A typical line of sight path is shown in red, and first-order
reflections are shown in pink. Correspoding voxels are showns as dots.

5.1.1 Approximating Channel with First-Order Reflections

NeRFMap models the total received power at the Rz as the combination of
the LoS power NeRFMap_LoS, and the contributions from all the first-order re-
flections. To validate the contribution of the achievable power from NeRFMap
when compared to the total received power v, we evaluate the relative con-
tributions of these signals to the total power using the NVIDIA Sionna sim-
ulator [55]. To this end, we compute the ratios of the LoS signal 9,5, LoS
with the first-order reflections 11,5 + e, , and LoS with the first two orders
of reflections Y105 + Yref, + Ures,- These are compared to the total received
power ¢, which is approximated as the sum of the LoS power and the power
from the first ten reflections.

Figure shows path power contribution ratio from different paths in
histogram. While the 11,5 power alone only accounts for approximately 70%
of the total received power and is more spread out, ¥r,s + ¥r.s, accounts
to 95% of the total power, with a reduced spread. Moreover, secondary
reflections 1,.s, only contribute to less than 3% of the total power. Hence,

NeRFMap models the first-order reflections along with the line-of-sight.

5.2 The LoS Model

Friss’ equation [59] from electromagnetics models the free-space received
power as P, = % where d is the distance of signal propagation, and K is a
product of transmit-power, wavelength, and antenna-related constants [59].
We model this free-space (LoS) behavior in the NeRF framework through
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Figure 5.2: Histograms illustrating the contribution ratios from line-of-sight
(LoS), LoS combined with first-order reflections, and LoS combined with
first- and second-order reflections. The orange graph highlights the
significant contribution of first-order reflections to the total power,
supporting NeRFMap’s approach of modeling only the first reflection
alongside the LoS power.

the following equation.

I a-4

{i:v;€LoS}
d2

'(/JLOS =K (51)

where K can be empirically measured, and d is the known distance between
the (T'z, Rx). The numerator includes the product of voxel densities over
all voxels along the LoS ray from Tz to Rz (with an abuse of notion, we
write this as v; € LoS). This models occlusions. When the LoS path is
completely free of any occlusions (i.e., §; = 0,Vi where {i : v; € LoS}), we
expect the received power to only be attenuated by the pathloss factor d* (in
the denominator). Equation has a slight difference to classical NeRF’s
volumetric scene function. In our case, voxels along the ray do not contribute
to the received power (whereas in NeRF, each voxel’s color is aggregated to
model the final pixel color at the image). In other words, we have modeled

a single transmitter in Equation ([5.1)).
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5.3 The Reflection Model

To model reflections, we consider a given voxel v;. Whether v; reflects a ray
from the Tz towards Rz depends on (1) the density d; of the voxel, (2) the
orientation wj, (3) the (T'z, Rx) locations, and (4) whether the path from Tz
to v;, and from v; to Rx are both occlusion-free. Parameterized by these,
Equation 5.2/ models the reflected power at the Rz, denoted as 1,.f(v;), that
arrives after reflection on v;.

Let us explain this equation briefly. The leading d; ensures that voxel v,
is not a reflector when §; = 0. The f(6, ) term models the wave-surface
interactions, i.e., how signals get attenuated as a function of the incident
angle # and how signals scatter as a function of the offset angle 3 between

the reflected ray and the direction of the Rz from v;.
II a-a JI -
ke{Rx:wv;} le{v;:Tx}
(dTac:vj + dvj:Rx)2

The next two product terms ensure that for the Rx to receive this reflec-

Vrep(vs) = 0;f(0,3) (5.2)

tion, the voxels along the 2 segments (T to v;, and from v; to Rz) must be
non-opaque; if any d; or d; equals 1, that reflection path is blocked, produc-
ing no power contribution via this voxel v; to the receiver Rz. Finally, the
denominator denotes the total squared distance from Tz to v;, and from v;
to Rz, modeling the pathloss factor.

To complete the above model, the natural question is: which vozels are
contributing to the received power? Geometrically, any opaque voxel can be
a plausible reflection point between any (T'xz, Rx) pair. This is because when
we consider the triangle between Tz, v;, and Rz, the voxel orientation w;
can be assigned a direction that bisects the angle at v;. For this wj;, the
reflected ray will perfectly arrive at the Rz. Thus, without the knowledge
of orientation and density, the total first-order reflection power at the Rz
should be modeled as the sum of reflections on all voxels. This makes the
optimization problem excessively under-determined.

To cope with this, we assume that surfaces in the environment are orien-
tated discretely in one of K, angles. When K, = 4, the walls can either be
vertical, horizontal, tilted at 45° or tilted at 135°. Under this assumption,

the voxels that can produce plausible reflections are far fewer — we call this
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Figure 5.3: Colored stripes define the manifold from which reflections are
plausible between (T'z, Rz). Voxels located on the manifold form the
plausible set V. Dashed lines show plausible reflections.

the “plausible set” V. Figure [5.3]visualizes V and marks a few examples of
plausible reflections from voxels with w; = 45°. Equation (5.3)) sums up the

power from all reflections that occur on the plausible set:

Urep = Y res(v)) (5.3)

JjwjeV

Thus, the final multipath power function becomes

?/J = ¢LOS + wrefl (54)

5.4 Gradient Issues during Training
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Figure 5.4: NeRFMap’s two-stage training approach: In Stage 1, the LoS
model is trained using known Rz locations and signal power. This provides
a warm-start to the reflection model in Stage 2 which refines the learned
voxel densities and orientation. During inference, NeRFMap outputs voxel
densities at set of queried Rx locations, representing the inferred floorplan.

33



Training against an Ly loss, £ = ||t — ¢*||? , did not generate legible
floorplans. We found that the 1,5 dominated the loss term, drowning the
reflection model’s influence on learning. At a high level, the gradient of
the LoS model (Equation (5.1)) w.r.t. J; has fewer terms in the numerator’s
product, and a smaller d? in the denominator. The reflection model’s gradient
w.r.t. d; has many more terms since the reflection path is much longer; the
denominator is also larger. Since (1 — J;) < 1, their products force the
gradient to decrease geometrically with more terms, causing the reflection
gradient to be much smaller compared to LoS.

We formalize this explanation below by considering the LoS and reflection
losses individuallyP}

2 - 2
‘ Lep = HQ/]ref — Yey

.

Lios = HQZ)LOS — Vlos

)
2

Consider the gradient of L;,5 w.r.t the density of v;.

Vs Lros = 2(VLos — Vi,s) Z Vi bis
{n:i€LoS(M}
(n) K
where Vs, ¢ = o H (1—4d;) (5.5)
jeLoS(™)
J#i

where LoS™ is the n'* LoS path passing through voxel v;.
The gradient of £,.; has a nearly identical expression with the only differ-

ence being many more product terms and that V(;iqﬁ?(f;) depends on where v;

is present in the n-th set of reflection path voxels (denoted by Ref™). For

example,
Vst == [ a-6) [[ -6 (5.6)
jERef(), keRef{7,
J#i

5™ (g, )
(d), + di,)?

here V(;iwﬁzj)c’h denotes the gradient when v; is between T to the reflection

'Here, ¥* denotes the ground truth signal power
2For the ease of explanation, we use 1} ¢ and 9, 7 to denote the ground truth LoS
and reflection powers, respectively. We do not need to know these terms in practice.
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point v.

Finally, since the modeled power approximates the measured power, the
residual error will remain non-zero even if the floorplan is accurately learnt.
As a result, the optimization is biased towards voxels of higher gradients,
i.e., voxels on the LoS path, suppressing the importance of reflections. To

address this, we train NeRFMap in 2 stages.

5.5  Multi-stage Training

Stage 1:We first use the LoS model against the measured ground truth power
1*. This converges quickly because the network easily learns the transparent
voxels (0 = 0) that are located along LoS paths. For LoS paths that are
occluded, the network incorrectly learns excessive opaque voxels between the
(T'z, Rz), but this does not affect the LoS error since the path is anyway
occluded. Hence, the outcome is a crude floorplan but a near-perfect LoS
power estimate @ELOS. We utilize this l/;Los in Stage 2 (discussed soon).

As Stage 1 training progresses, some opaque voxels emerge, offering crude
contours of some walls. We estimate a voxel’s spatial gradient, Vd;, and
use it to supervise the orientation w; of that voxel. The intuition is that a
voxel’s orientation — needed to model reflections in Stage 2 — is essentially
determined by the local surface around that voxel. The gradient V9, offers

an opportunity for weak supervision. Thus, the loss for Stage 1 is:

Estagel — |W* - 77bL05||§ + £+ (57>
where £ =\ " [|Vd; — wjll; + AaLoeg (5.8)
Vi

with A1, Ay > 0 being tunable hyperparameters. The regularization term
L,y will be discussed soon. Finally, the near-perfect estimate of LoS power,
denoted &LoS, is also carried over to Stage 2 to ensure the reflection model

is penalized when it veers away from this LoS estimate.

Stage 2 focuses on training the reflection model using the following loss
function.
2

+L* (5.9)
2

Ltagez = HQ;LOS — VLos E + H@/J* — Vo5 — Yref,
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The first term in the RHS ensures that the Stage 1’s LoS estimate is hon-
ored in Stage 2. The second term subtracts Stage 1’s LoS power from the
measured power, (¢* — QZLOS); this models the total power only due to re-
flections. Our (first-order) reflection model 9,.p, is trained to match this
aggregate power (L loss). The supervision on orientation and the regular-

ization terms are the same as in Stage 1.

5.6 Regularization

Floorplans demonstrate significant local similarity in orientation; hence we
penalize differences in orientation among neighbors, using a regularization
(Equation (5.10))) similar to Total Variation [60]. This can be achieved with-
out additional computational cost to the neural network by directly utilizing

voxel orientations obtained from each ray.

Ny Np—1

1 2

n=1 i=1

Here, n, is the number of voxels queried from the plausible set V and n, is

the number of voxels along each ray.

5.7 Relaxing Tz assumptions

We relax the assumption that Tz locations are known. Given the set of re-
ceiver locations {Rx;} and the signal powers {1}, the goal is to estimate
the transmitter location Tx = (Txy, Txy). To achieve this, we apply a
maximum likelihood estimate (MLE). Briefly, among all the measured signal
powers {¢f} from a given Tz we identify the P strongest signal powers and
their corresponding received locations. The rationale behind selecting the
strongest powers is that they are significantly influenced by the LoS com-
ponent, allowing us to model them effectively only using the Friss’ equation
[59]. We assume independence among the measurements since the received

LoS power across locations, for a given a Tz location, are independent. So,
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the likelihood equation for all these P measurements can be written as:

P

p(; 05, ¥p | Tx) = [ [ (v |Tx)

i=1

We approximate that the v} is normally distributed with a mean modeled
by the line-of-sight power % and variance 02 where d; = ||Tx — Rx;|| is the
distance between Tx and Rx;. The likelihood function for each observation

¥F is thus given by:

. | (W — &)
p(¢z |TX) = \/W eXp _T;

Maximizing log-likelihood L of {¢}} Vi€ {1,..., P}

o LT — S 1 (5 — 2)°
og L( X)—iz1 og Wexp o

P 2

P 1 K
log L(Tx) = — log(2m0”) — 375 ) ( i d_)
=1

Minimizing the second term gives the optimal Tx" as:

P % 2
Tx* = argmin (Qﬁ — —)
i D (V- T R

We use Scipy’s ‘minimize’ with the BFGS method to numerically solve for
Tx".

5.8 Implementation Details

We assume the floorplan is an unknown shape inside a 512 x 512 grid. For
any ray or ray segment, we uniformly sample n, = 64 voxels on it. We
choose Ay = Xy = 0.01 for LoS training followed by \; = Ay = 0.1 for
training the NeRFMap model. We find that discretized opacity values to {0, 1}
improve our LoS model. We use the straight-through estimator to avoid the
unavailability of the gradient at the discretization step. To help optimization

and to encourage sparsity of the number of reflections, we use only the top-
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k contributions (with k& = 10) while training the reflection model. We use
the ADAM optimizer [51] with 1.07* learning rate. We train our models on
NVIDIA A100 GPUs.

5.8.1 Additional Details on Model training

The signal power measured at the receiver is typically represented in a loga-
rithmic scale. RSSI values generally range from -50 dB to -120 dB, where a
higher value (e.g., -50 dB) corresponds to a stronger signal. Figure illus-
trates a typical input to NeRFMap where measurements have been collected
from approximately 2000 Rzs positioned in the floorplan, with data gathered

from five Tzs.

5.8.2 Linear-Scale RSSI Loss:

For the training of NeRFMap, we optimize on the linear-scale RSSI values.
Linear loss ensures that the receivers that capture stronger signals are given
more importance during training. We partition our dataset into an 80-20
split, using 80% of the data for model training, including baselines.

For NeRFMap’s network, we employ a simple 8-layer MLP with a hidden
dimension of 256 units. For each voxel v;, the outputs from the final layer
are passed through a sigmoid activation to obtain the opacity d, and through
a Gumbel softmax [49] layer to sample the output normal w from one of
the possible K, orientations. This sampled orientation is then used in the
subsequent stages of training, such as for calculating the direction of the
reflected signal M. For the learnable baselines, such as MLP and NeRF2, we

adopt the same architecture as used in NeRFMap.

5.8.3 Supervising Voxel Orientations

NeRFMap leverages the spatial gradient of a voxel’s opacity, V4, to super-
vise its orientation during the multi-stage training process. To compute this
gradient, we evaluate the opacities of neighboring voxels along each of the
K, directions and apply finite difference methods. We found that this ap-

proach yielded superior results compared to using the gradient available via
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Figure 5.5: Observed signal power at the Rzs . The top left figure shows
the positions of the Rzs and Tzs, followed by the power at the receivers
from each of the five transmitters. The colormap ranges from red showing
stronger signals to blue for weaker signals.

Tz P M

Figure 5.6: An incoming ray from a transmitter Tx reflecting around voxel
v; and arriving at receiver Rz. The incoming ray makes an incident angle ¢
with the normal w; to the reflecting surface. The ray after reflection passes
a receiver Rz at a certain distance making an angle f3.

autograd.

In general, the power from reflections depends not only on the total dis-
tance traveled but also on the angle at which the reflection occurs at the
voxel v;, and whether the reflected ray reaches the receiver (Rz). We model
this behavior through 6 and f, respectively, which parameterize a nonlinear
function f. The incidence angle # measures the angle between the Tx and
the orientation w;, and 8 denotes the angle Rz makes with the reflected ray
M (see Figure . Note that if v; € V, and if w; is correct, 8 = 0. The
reflected ray M can be computed as shown in Equation .

M= (v, —Tz) —2[(v; — Tz).w;| w, (5.11)
Here w; is a unit vector.
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CHAPTER 6

RESULTS

We now present our experimental setting followed by the results and analysis.
Floor plan and Trajectory. Floorplans are drawn from the Zillow Indoor
Dataset [20] composed of one-story homes. We also generate floorplans from
realistic apartment layouts. In each floor plan, we use the A* algorithm [50]
to generate a walking trajectory that traverses all rooms. This mimics a user
walking with a phone and collecting WiFi measurements. The rooms are
devoid of furniture; however, we will later add a few toy shapes to mimic
objects in the path of trajectories.

Wireless Simulation Dataset. We utilize the NVIDIA Sionna RT [55] [19],
a differentiable ray tracer for radio propagation modeling, as the platform to
compute the ground truth signal power (also known as received signal strength
index (RSSI)). We randomly place M Tzs, one in each room, denoted as T,,.
To simulate omnidirectional transmissions at 2.4GHz from each Tz location,
we shoot 107 rays into the given floorplan. For receiver locations, we sample
the user trajectory at a fixed time interval to obtain N Rz locations, denoted
as R,. Only rays that reach the Rz location within 5 bounces (i.e., up to 5-
th order reflections) contribute to the RSSI; others attenuate excessively and
are negligible. Sionna accounts for specular reflections and refraction when
these rays interact with walls in the specified floor plan; we use the default
materials for the walls. As with most WiFi simulators, Sionna does not model
signal penetration through walls — this means that a 7z and Rz located on
opposite sides of a wall will not receive any RSSI. Overall, we gather M x N

RSSI measurements (75, Ry, ¥m,n) that serve as input to NeRFMap.

6.1 Baselines

Results are compared against the following baselines:

40



Table 6.1: Performance Results for Wall_IoU, F1 Score, and RPE

2000 receiver locations 1000 receiver locations
Method Wall IoU 1 | F1 Score 1 | RPE | | Wall.IoU 1 | F1 Score 1T | RPE |
MLP - - 1.03 - - 0.65
Heatmap Segmentation | 0.12 + 0.03 |0.21 £ 0.05| 1.32 |0.09 £ 0.02 |0.16 £ 0.04 | 1.46
NeRF2 0.14 £0.02 1 0.24 + 0.03 | 4.36 |0.12 & 0.02 | 0.21 £ 0.04 4.2
NeRFMap_LoS 0.27 +0.07|0.42 £ 0.10 | 9.12 |0.25 +0.04|0.39 = 0.06 | 10.86
NeRFMap 0.38 + 0.06 | 0.55 £ 0.06 | 3.56 |0.32 & 0.06 | 0.48 + 0.05 | 4.32

1. NeRF2 [15]: Models WiFi reflections via virtual transmitters to predict

the channel impulse response (CIR).

. Heatmap Segmentation [61]: Interpolates CIR across the whole floor-
plan and applies an image segmentation algorithm (on the interpolated
RSSI heatmap) to isolate each room. Essentially, the algorithm identi-
fies the contours of sharp RSSI change since such contours are likely to
correspond to walls. The raw trajectory signal power values are first in-
terpolated to obtain a heatmap that provides a smoother representation
of the input measurements. Of course, interpolating for regions with-
out any data can lead to incorrect results, especially in larger unseen
areas. A rule-based classifier is then applied for segmentation, using
two criteria: (1) RSSI values above a threshold to identify potential
room areas, and (2) smoothness of the RSSI signal, assessed through
the second-order derivative, to ensure continuity within rooms. The ini-
tial segmentation is refined using morphological operations (via dilation
and erosion) with a 3x3 kernel to smooth rough edges and eliminate
small components. Overlapping regions are resolved by comparing gra-
dient magnitudes, followed by additional morphological processing and
connected component analysis to obtain the final, refined segmentation.

Implementation details are included in the Appendix.

. MLP: Trains a MLP network to directly estimate the RSSI based on

Tr and Rz locations.

. NeRFMap_LoS: Reports NeRFMap’s result considering only LoS path
(ablation study).

Metrics. We evaluate using 3 metrics:
(A) Wall Intersection over Union (Wall IoU): This metric measures

the degree to which the predicted walls and the true walls superimpose over
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Figure 6.1: Qualitative comparison of Ground Truth floorplans against
those inferred by baselines Heatmap Segmentation and NeRF2. The bottom
two rows show floorplans by our proposed models NeRFMap LoS and
NeRFMap with clearly demarcated walls and boundaries.

each other in the 2D floorplan. The following equation defines the metric

WPNWP*

wWall JoU= ——
A R

where W P denotes the set of predicted wall pixels and W P* denotes the
true wall pixels. This is a harsh metric given wall pixels are a small fraction
of the total floorplan; if a predicted wall is even offset by one pixel from the
true wall, the Wall_IoU drops significantly. IoU [56] has often been defined
in terms of room pixels (instead of wall pixels); this is an overestimate in our
opinion, since predicting even an empty floorplan results in an impressively
high IToU.

(B) F1 score [57]: Defined as F'1 = 228 where P is the precision and R

P+R >
is the recall of the bitmap. P and R are defined based on wall pixels, similar

as above.
(C) RSSI Prediction Error (RPE): We split all Rz locations into a
training and test set. RPE reports the average median RSSI error over all

the test locations across floorplans.

42



6.2 Overall Summarized Results

Table reports comparative results between NeRFMap and baselines, aver-
aged over 20 different experiments, using all 3 metrics. With N=2000 Rx
locations, the user is expected to walk for around 8 minutes, assuming her
phone is sampling at 4Hz. We repeat the experiment for fewer measurements
of N=1000, reducing the user’s burden to 4 minutes of walking; this is sparse
measurements given most floorplans are more than 250, 000 pixels. Mean and
standard deviation are reported in the table. NeRFMap outperforms all mod-
els in terms of Wall_IoU and F1 Score. Compared to NeRFMap_LoS, NeRFMap
demonstrates visible improvements, highlighting the advantage of modeling
reflections. The absolute Wall_IoU values are understandably low because
the metric penalizes small errors.

NeRF2 is unable to predict the floor plan (opaque voxels) well and is only
able to achieve better RPE than NeRFMap LoS. NeRFMap outperforms both
NeRFMap LoS and NeRF2. Interestingly, MLP incurs a lower RPE than NeRF2
suggesting that RSSI is amenable to interpolation, and NeRF2’s implicit rep-

resentation may not be an advantage for this interpolation task.

6.3 Qualitative Results

We report qualitative results, including visual floorplans, predicted RSSI
heatmap, and ray-tracing visualization.

B Visual floorplans. Figure [6.1] presents visualization from all baselines
and a comparison with our LoS-only model (as ablation). All the floorplans
use N = 2000 receiver locations. We make the following observations. (1)
Heatmap Segmentation leverages the difference of RSSI on opposite sides of
a wall, however, reflections pollute this pattern, especially at larger distances
between Tx and Rx. Further, signals leak through open doors, injecting
errors in the room boundaries. (2) NeRF2 performs poorly since its MLP
learns one among many possible assignments of virtual transmitters to fit
the RSSI training data. The virtual transmitters hardly correlate to the
walls of the environment. (3) NeRFMap_LoS can infer the position of inner
walls. However, these walls are thick and slanted because while NeRFMap_LoS

can identify occlusions between a (Tx, Rz) pair, it cannot tell the shape
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NeRFMap

Figure 6.2: Heatmaps highlighting NeRFMap’s ability to learn signal
propagation. (Top row) Inferred RSST heatmaps with Tz (red star) as used
in training. (Bottom row) A new Tz (green star) degrades NeRF2 and MLP
while NeRFMap shows accurate predictions.

and pattern of these occlusions. Crucially, NeRFMap LoS also cannot infer
the boundary walls since no receivers are located outside the house. (4)
NeRFMap outperforms the baselines, sharpens the inner walls compared to
NeRFMap_LoS, and constructs the boundary walls well.

Shortcomings: Recall that some parts of the floorplan are in the “blind
spots” of our dataset since no reflection arrives from those parts to any of our
sparse Rz locations (e.g., see bottom left corner of the 1 floorplan; no signals
reflect off this region to arrive at any of the Rz locations). Hence, NeRFMap
is unable to construct the bottom of the left wall in this floorplan. Finally,
note that areas outside the floorplan (e.g., the regions on the right of 6"
floorplan) cannot be estimated correctly since no measurements are available
from those regions (hence, those voxels do not influence the gradients).

B RSSI prediction. Figure [6.2] visualizes and compares predicted RSSI.
The top row shows predictions at new Rx locations with the T'x held at
the trained location; the bottom row shows predictions when both Tz and
Rz are moved to new locations. Two key observations emerge: (1) NeRFMap

is limited by Sionna’s inability to simulate through-wall signal penetration;
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Figure 6.3: (a) Tracing reflections on the learnt floorplan. (b) Ground truth
reflections from Sionna. Star indicates T'x

NeRF2 has access to an expensive license for a through-wall simulation and
shows better predictions inside the rooms. However, in areas that NeRFMap
can "see” (e.g., corridors in the top row), the awareness of reflecting surfaces
leads to significantly better predictions. (2) When the Tz location differs
from that used in training, NeRFMap’s improvement over NeRF2 is significant.
This is the core advantage of first solving the inverse floor plan inference
problem and then leveraging it for RSSI prediction.

B Learning reflected rays. For a given (T'z, Rr) pair, we examine the
points in the plausible set V that contribute to the reflections. Figure
compares the ray-tracing results from the NVIDIA Sionna simulator (we pick
only first-order reflections). NeRFMap captures many of the correct reflections.
Of course, some are incorrect — a false positive occurs in the bottom right
room since some wall segment is missing in our estimate; false negatives also

occur in the top right room where again some parts of the wall are missing.

6.4 Relaxing Assumptions & Sensitivity Study

B Transmitter’s location. NeRFMap assumes known 7'z locations but we
relax this assumption. We estimate the 7« location using maximum like-
lihood estimation from observed RSSI power, ¥*. We describe the method
in Section on average, the estimated Tz location error is 2.08 pixels in

floorplans of sizes ~ 512 x 512 pixels.
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Figure [6.4 visualizes the ground truth and the estimated Tz locations
across 6 floorplans. The estimated Tz positions closely match the ground
truth, and we report the Tx location error to be 2.08 pixels. Figure [6.5]
demonstrates the performance of NeRFMap_LoS and NeRFMap using the es-
timated Tz locations for the 6 floorplans in Figure [6.4l Performance is

comparable to that achieved with ground truth 7z locations, highlighting

robustness.
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Figure 6.4: Comparison of Ground truth Tz locations indicated in red in
the first column with the estimated Tz locations shown in blue from
starting from column two. The Rx positions used for the estimation are
marked in green.

B Receiver location error. Indoor positioning systems are able to localize
users but still incur some error. Table shows NeRFMap’s sensitivity to
this error. We inject Gaussian noise N'(0,02I) to the Rx locations; o = 1
implies a physical error of 1m. Wall IoU accuracy obviously drops with error
but 0.5 meter of error is tolerable without destroying the floorplan structure.
Advancements in WiFi positioning systems are demonstrating robust sub-

meter error.
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Figure 6.5: Qualitative comaprison of NeRFMap_LoS and NeRFMap when Tx
locations are unknown, and are estimated. The top row shows the ground
truth floorplan, Rz locations along with the estimated Txzs in blue. The
second and third row displays the performance of NeRFMap_LoS and
NeRFMap respectively. Despite the Tz locations being unknown, our
methods accurately estimate them, leading to performance comparable to
the case where Tz locations are known.

Table 6.2: Estimated Wall_IoU at various levels of injected noise o

Error o(m)

0

0.5

1

2

3

Wall_IoU

0.38

0.35

0.33

0.29

0.26

B Effect of Furniture. Figure visualizes inferred floorplans when toy

objects are scattered in open spaces (Rz locations remain N=2000). NeRFMap

is able to identify some of the object blobs but sharpening the small objects

is challenging, due to more higher-order reflections from furniture. Follow-

up work is needed, either in modeling 2"¢ order reflections or by imposing

stronger regularizations.

Follow-ups. (1) The Sionna simulator does not model through-wall signal

penetration; hence, we have placed a Tz in each room. In reality (or in ex-

pensive ray tracing simulators [62]), WiFi signals will penetrate walls. This

is an advantage since signals from a single Tz will be measurable across the

whole home. However, voxel opacities will no longer be bimodal (0 or 1),

hence NeRFMap will need to assign § € [0, 1] to match the measured RSSI.

This will require modifications to our models. (2) The ability to model 2" or-
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Figure 6.6: NeRFMap’s floorplan inference with furniture present in a typical
conference room (left) and apartment (right) layout.

der reflections will boost NeRFMap’s accuracy, allowing it to sharpen the scene
and decode smaller objects. Even for short range applications, such as non-
intrusive medical imaging, such 2" and 3"¢ order reflections would be helpful.
This remains an open problem for the community. (3) Extending NeRFMap
to 3D floorplans is also of interest, and since it is undesirable to increase the
number of measurements, effective 3D priors, or 2D-to-3D post-processing,
may be necessary. Such post-processing tools exist [63], but we have not
applied them since our goal is to improve NeRF’s inherent capability. (4)
Fusing additional signal modalities, such as audio (from music loudspeak-
ers), or overhearing from many WiFi enabled devices at home, could lead
to increased measurement density. (5) Finally, NeRFMap floorplans can offer
valuable spatial context to Neural RIR synthesizers like [15, [16], 25] [18] 26].
Synthesized RIR could in-turn aid NeRFMap’s floorplan inference, forming
the basis for an alternating optimization strategy. We leave these ideas to

follow-up research.
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CHAPTER 7

CONCLUSION

In this thesis, we present two complementary approaches for inferring in-
door floorplans using wireless signal measurements. First, we introduced
PhyMap, a data-driven method that leverages a learned physical model to
map RF signal strengths to plausible floorplan representations. At the heart
of PhyMap is a physics-based model PhyModel that implicitly learns a con-
tinuous signal field over the environment, capturing key propagation effects
such as line-of-sight attenuation and reflections. This physical model serves
as a differentiable guide to refine the floorplan during training and facilitates
test-time optimization, enabling improved inference through gradient-based
refinement.

Next, we propose NeRFMap, a Neural Radiance Fields (NeRF)-inspired ap-
proach that explicitly models signal propagation to tackle the inverse prob-
lem of floorplan inference. By adapting the classical NeRF framework to RF
signals, NeRFMap captures multipath propagation, including line-of-sight and
all first-order reflections—accounts for most signal energy, by parameterizing
each voxel with opacity and orientation. The key idea involves teaching the
NeRF that reflections originate from a manifold, and then using a two-stage
optimization to mitigate gradient issues arising from line-of-sight dominance.
Our results demonstrate that NeRFMap successfully infers accurate floorplans,
outperforming baselines that predict the signal power without solving the in-
verse problem.

Both PhyMap and NeRFMap exhibit additional capabilities beyond floorplan
inference, including transmitter localization, signal field prediction, and basic
ray tracing. Looking ahead, we envision a unified framework that integrates
both paradigms—combining the data generalization strengths of PhyMap with
the signal modeling capability and interpretability of NeRFMap. We believe
such a hybrid model can pave the way for robust and generalizable RF-based

scene understanding in diverse real-world environments.
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APPENDIX A

PHYMODEL

A1 Architectural Variants of PhyModel

To address the limitations of PhyModel discussed in Section [4.8] we investi-
gated alternative architectures with the aim of improving its ability to guide

floorplan inference.

A.1.1 Two-Component Signal Decomposition

The first approach involved decomposing RSSI prediction into two stages:
one to model line-of-sight (LoS) signals and the other to model reflections.
We trained two independent ResNet50 models for each component and com-
bined their outputs to estimate the final RSSI values. As shown in Fig-
ure [A1], this approach reduced the overall prediction error. However, it
requires ground truth separation of LoS and reflected components, which is

impractical in real-world settings.

A.1.2 Dense Prediction Transformer

We also evaluated a Dense Prediction Transformer (DPT) [58] to model RSSI
fields. The model was trained with the same loss function and dataset used
for PhyModel, but no architecture-specific adjustments were made from the
original DPT. As shown in Figure the DPT model achieved an MSE of
7.31 dB in RSSI prediction. However, this model did not translate into better

performance for floorplan reconstruction when integrated into PhyMap.
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Figure A.1: RSSI prediction using a dual-ResNet model separating
line-of-sight and reflected signal components. Left set denotes the
line-of-sight model, while the right set denotes the reflected signal model.
First column in every image pair shows performanace with VQ-VAE

reconstructed floorplans, while the second column shows performance with
ground truth floorplans.

A.2 Additional Attempts

We also experimented with injecting contrastive samples during training to
improve robustness. However, these efforts did not lead to measurable im-
provements in the ability of PhyModel to distinguish between correct and
incorrect floorplans. These findings suggest that architectural complexity
alone may not be insufficient to overcome the limitations of current data-

driven models in capturing signal propagation.
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Figure A.2: RSSI predictions using a Dense Prediction Transformer. Top
row is the VQ-VAE reconstructed flooplans, second row is the transmitter,
third row is the receiver binary mask, and the last two rows show the
ground truth and predicted RSSI results.
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APPENDIX B

NERFMAP

B.1 Evaluation on Additional Floorplans

We evaluate NeRFMap on additional floorplans to demonstrate its generaliza-
tion capabilities. Figure [B.I] shows the performanace on realistic apartment
layouts. We note that while NeRF2 is unable to predcit any reasonable floor-
plan, Heatmap Segmentations shape is limited by the (convex hull of the)
trajectory data (see bottom left of the second row, first column). Addition-
ally, it fails to capture critical details, such as door openings. The fourth
and fifth rows show floorplans by our proposed models NeRFMap_LoS and
NeRFMap. NeRFMap_LoS captures the rough shape of the floorplan, especially
the interior walls, while NeRFMap further improves these walls by adjusting
their thickness and accurately correcting their shape. NeRFMap also correctly
identifies the floorplan boundary, as evidenced in the last column, where the
exact boundary is captured just from the reflections. To understand the sig-
nal propagation captured by NeRFMap, we place one Tz in each floor plan
randomly (that is not present in the training data) and evaluate the signal
power at discrete receivers. These Rxs are placed on a 2D grid at equal
intervals and the predicted signal power is converted into a heatmap. The
bottom row shows these inferred signal power heatmaps with the brightest
point indicating the Tx location (as the Rz closest to the Tx receives the
highest power). NeRFMap is not only able to predict the signals well across
the floorplan, but also capture the propagation paths i.e., LoS signal and the
first-order reflections. For instance, in the first column, the left portion of
the center hall receives power only due to the wall reflection from the left

wall.
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Figure shows the performanace on ZIND floorplans. The fourth and
fifth rows show floorplans by our proposed models NeRFMap_LoS and NeRFMap
with clearly identified walls and boundaries. The bottom row shows inferred
signal power heatmaps demonstrating NeRFMap’s capability to learn accurate

signal propagation.
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Figure B.1: Qualitative comparison of Ground Truth floorplans against
those inferred by baselines Heatmap Segmentation and NeRF2
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Figure B.2: Additional qualitative comparisons of Ground Truth floorplans
against those inferred by baselines Heatmap Segmentation and NeRF2

61



	CHAPTER 1 INTRODUCTION
	PhyMap
	NeRFMap

	CHAPTER 2 BACKGROUND
	Channel Impulse Response
	Neural Radiance Fields

	CHAPTER 3 RELATED WORK
	Wireless (WiFi) channel prediction using NeRFs
	Neural radiance fields for audio
	Modeling reflections in optical NeRFs
	Floorplan Estimation

	CHAPTER 4 PHYMAP
	Setup and Overview
	Encoding Floorplans
	Method
	PhyModel
	Estimating Tx

	Test Time Optimization
	Implementation Details
	Pretraining VQ-VAE
	PhyModel Training
	Training PhyMap

	Results
	VQ-VAE
	PhyMap
	PhyModel

	Discussion

	CHAPTER 5 NERFMAP
	Setup and Overview
	Approximating Channel with First-Order Reflections

	The LoS Model
	The Reflection Model
	Gradient Issues during Training
	Multi-stage Training
	Regularization
	Relaxing Tx assumptions
	Implementation Details
	Additional Details on Model training
	Linear-Scale RSSI Loss:
	Supervising Voxel Orientations


	CHAPTER 6 RESULTS
	Baselines
	Overall Summarized Results
	Qualitative Results
	Relaxing Assumptions & Sensitivity Study

	CHAPTER 7 CONCLUSION
	REFERENCES
	APPENDIX A PHYMODEL
	Architectural Variants of PhyModel
	Two-Component Signal Decomposition
	Dense Prediction Transformer

	Additional Attempts

	APPENDIX B NERFMAP
	Evaluation on Additional Floorplans


