
596

Supplementary material for ‘Computing an597

Efficient Exploration Basis for Learning with598

Univariate Polynomial Features’599

600

Proofs601

The proof of Theorem 1 uses the following lemma.602

Lemma 1. Let s ∈ [pmin, pmax] and suppose
p1, . . . , pn+1 ∈ [pmin, pmax] are such that pi 6= pj
for all i 6= j. Then c1, . . . , cn+1 ∈ R satisfy

c1fn(p1) + · · ·+ cn+1fn(pn+1) = fn(s) (10)

if and only if ci = li(s,p) for each i = 1, . . . , n+ 1, where
p = [p1, . . . , pn+1]T, and li(·,p) is the ith Lagrange basis
polynomial for the points {p1, p2, . . . , pn+1} given by

li(s,p)
def
=

∏
j 6=i

(s− pj)∏
j 6=i

(pi − pj)
. (11)

Proof. Equation (10) may be rewritten as

V (p)c(s) = fn(s). (12)

The determinant of the Vandermonde matrix V (p) equals
(see Fact 7.18.5 from Bernstein (2018))

det(V (p)) =
∏

1≤i<j≤n+1

(pj − pi). (13)

which is nonzero since pi 6= pj for j 6= i. Equation (12)
thus has a unique solution. Applying Cramer’s rule (see Fact
3.16.12 from Bernstein (2018)) gives this solution to be

ci =
det(V (psi ))

det(V (p))
(14)

where psi is the vector obtained by replacing the ith element603

of p by s. Using (13) to expand the determinants of the two604

Vandermonde matrices in (14) and canceling common terms605

gives ci = li(s,p).606

Proof of Theorem 1. To prove 1) implies 2), suppose the607

set {fn(p1), . . . , fn(pn+1)} is a barycentric spanner for Dn608

for some p = [p1, . . . , pn+1]T ∈ [pmin, pmax]n+1 such that609

pmin ≤ p1 ≤ · · · ≤ pn+1 ≤ pmax. Since the set Dn is610

not contained in any proper subspace of Rn+1, the vectors611

{fn(pi)}n+1
i=1 are all distinct. Hence, pi 6= pj for j 6= i, and612

it follows that pmin ≤ p1 < · · · < pn+1 ≤ pmax.613

Next, let x = fn(s) for some s ∈ [pmin, pmax]. By614

the definition of barycentric spanner, there exist c(s) =615

[c1(s), . . . , cn+1(s)]T ∈ [−1, 1]n+1 such that c1(s)fn(p1)+616

· · · + cn+1(s)fn(pn+1) = fn(s). By Lemma 1, ci(s) =617

li(s,p) for each i.618

It now follows from the definition of a barycentric span-619

ner that |li(s,p)|≤ 1 for all s ∈ [pmin, pmax] and i =620

1, . . . , n + 1. On the other hand, directly substituting pi in621

(11) gives li(pi,p) = 1 for all i ∈ {1, . . . , n+ 1}, showing622

that pi is a local maximizer of li(·,p) for each i. We have al- 623

ready shown above that the points p2, . . . , pn are necessarily 624

interior points of the interval [pmin, pmax]. Hence first-order 625

necessary conditions for optimality apply, and give 626

∂li(s,p)

∂s

∣∣∣∣
s=pi

= 0, i = 2, . . . , n. (15)

Using (11) in (15) directly yields (1). Next, note that

∂l1(s,p)

∂s

∣∣∣∣
s=p1

=
∑
j 6=1

1

p1 − pj
< 0. (16)

Hence, if p1 > pmin, then there exists ε > 0 such that p1 − 627

ε ∈ [pmin, pmax] and l1(p1 − ε,p) > l1(p1,p) = 1 which 628

contradicts our earlier conclusion that |l1(s,p)|≤ 1 for all 629

s ∈ [pmin, pmax]. The contradiction shows that p1 = pmin. 630

A similar argument shows that pn+1 = pmax. This shows 631

that 1) implies 2). 632

To show that 2) implies 3), consider a p ∈ Rn+1 as in the 633

statement 2). On applying Proposition 1 with k = n−1, a = 634

p1, and b = pn+1, we conclude that z = [p2, . . . , pn]T ∈ 635

Rn−1 is the unique global maximizer of the function U de- 636

fined by (4). Comparing (13) with (4) shows that p is a max- 637

imizer of ln|det(V (·))| among all vectors w ∈ Rn+1 satis- 638

fying pmin = w1 < w2 < · · · < wn < wn+1 = pmax. It 639

follows that 2) implies 3). 640

To prove that 3) implies 1), suppose p is as in statement 641

3), and consider s ∈ (pmin, pmax). Arguing as in the proof 642

of “1) implies 2)”, we see that c(s) ∈ Rn+1 defined by 643

(14) satisfies fn(s) = c1(s)fn(p1) + · · · + cn(s)fn(pn+1). 644

By the global optimality of p, we have |det(V (psi ))|≤ 645

|det(V (p))|, that is, |ci(s)|≤ 1 for all i. This completes the 646

proof. 647

Proof of Proposition 1. First, observe that C = {z ∈ Rk :
a < z1 < z2 < · · · < zk < b} is an open convex set. Note
that the function x 7→ ln|x−r| is continuously differentiable
at x 6= r with derivative (x − r)−1. Using this observation,
one can conclude that U is continuously differentiable on C,
and calculate
∂U

∂zi
(z) =

1

zi − a
+
∑
j 6=i

1

zi − zj
+

1

zi − b
, i = 1, . . . , k.

(17)
We can differentiate (17), and further calculate

∂2U

∂z2i
=

−1

(zi − a)2
−
∑
j 6=i

1

(zi − zj)2
− 1

(zi − b)2
, (18)

∂2U

∂zizj
=

1

(zi − zj)2
, (19)

for i, j ∈ {1, . . . , k}, j 6= i. The second-order mixed partial 648

derivatives in (18) and (19) define the Hessian matrix H(z) 649

of U at z ∈ C. Applying the Gershgorin circle theorem (see 650

Fact 6.10.22 from Bernstein (2018)) to H(z) lets us con- 651

clude that H(z) is negative definite for each z ∈ C. This 652

implies that U is strictly concave on C. 653

We first show that U has a unique global maximizer in C. 654

To show this, note that the function U is unbounded below. 655



For instance, U → −∞ as z1 → a. Hence we may choose656

K ∈ R such that the set F def
= {x ∈ C : U(x) ≥ K}657

is nonempty. We claim that F is closed in Rk. To arrive658

at a contradiction, suppose F is not closed. Then there ex-659

ists x ∈ Rk\F and a sequence {xl}∞l=1 in F converging660

to x. Since F ⊆ C, x belongs to the closure of C. On the661

other hand, x /∈ C, since otherwise the continuity of U on C662

would imply that K ≥ U(xl) → U(x), and contradict our663

assumption that x /∈ F . Thus x lies in the closure of C, but664

not inC. It follows that x satisfies at least one of the inequal-665

ities defining C with equality. However, the definition of U666

then implies that the sequence {U(xl)}∞l=1 diverges to −∞,667

contradicting our definition of F . This proves our claim that668

F is closed.669

F is also bounded, and hence compact, as C itself is con-670

tained in the bounded set [a, b]k. The continuous function U671

achieves its maximum over the compact set F at a point, say672

z∗ ∈ F . By the definition of F , we have U(z∗) ≥ K, while673

U(z) < K ≤ U(z∗) for all z ∈ C\F . Thus we conclude674

that z∗ is a global maximizer of U on C. Being strictly con-675

cave, U can have at most one global maximizer (Boyd and676

Vandenberghe 2004). It follows that z∗ is the unique global677

maximizer of U on C.678

Since C is open, first-order necessary conditions for op-679

timality imply that the first-order partial derivatives of U680

given by (17) vanish at z∗. Thus, z∗ is a solution to (3).681

If x ∈ C is any solution of (3), then, by (17), the gradi-682

ent of U at x is zero, while the Hessian H(x) is negative683

definite. By second-order sufficient conditions for optimal-684

ity, x is a local maximizer for U . However, strict concavity685

implies that x is also a global maximizer of U on C. It now686

follows from the uniqueness of the global maximizer shown687

above that x = z∗. Thus z∗ is the unique solution to (3).688

Next, consider the point x ∈ Rk defined by setting xi =689

b + a − z∗k+i−1. It is a simple matter to check that x ∈ C,690

and verify by direct substitution that x satisfies (3). Since we691

have already shown that z∗ is the unique solution to (3) in692

C, it follows that x = z∗. In other words, (5) holds. This693

completes the proof.694

695

Reduced form of Equations (1) and (2) by696

exploiting symmetry697

The relations (5) imply that the points pi, i = 1, . . . , n + 1,698

yielding the barycentric spanner are symmetrically placed699

about the midpoint p̄ def
= 1

2 (pmin + pmax) of the interval700

[pmin, pmax]. Thus, it is sufficient to find points lying only on701

one side of the midpoint. This can be essentially achieved by702

using the symmetry relations (5) to eliminate (roughly) half703

the variables from (1) and (2). Next, we describe the reduced704

versions of (1) and (2) obtained by exploiting the symmetry705

inherent in (5).706

First assume n = 2l for some l > 0. Then pl+1 = p̄ by

symmetry, and solving (1) reduces to solving ∑
j 6=i

1≤j≤l

1

pi − pj
+

1

pi + pj − 2p̄

+
1

pi − p̄
= 0, (20)

for i = 2, . . . , l. Likewise, optimizing (2) in the case n = 2l
reduces to optimizing the function

Ū(p) = ln

∣∣∣∣∣
(

l∏
i=2

(a− pi)2(b− pi)2(pi − p̄)3
)

×

 ∏
2≤i<j≤l

(pi − pj)2(pi + pj − 2p̄)2

∣∣∣∣∣∣ , (21)

on the set pmin < p1 < . . . < pl < p̄. Next, assume n =
2l + 1 for some l > 0. In this case, a solution of (1) can be
recovered by solving∑

j 6=i
1≤j≤l+1

1

pi − pj
+

1

pi + pj − 2p̄
= 0, i = 2, . . . , l + 1,

(22)
while the optimizer in (2) can be found by optimizing

Ū(p) = ln

∣∣∣∣∣
(
l+1∏
i=2

(a− pi)2(b− pi)2(pi − p̄)

)

×

 ∏
2≤i<j≤l+1

(pi − pj)2(pi + pj − 2p̄)2

∣∣∣∣∣∣ , (23)

on the set pmin < p1 < . . . < pl < p̄. 707

Proof of Proposition 2 708

In order to prove Proposition 2, we first prove the following 709

result. 710

Proposition 3. A barycentric spanner for the set D solves
the following minmax problem.

min
x1,...,xd∈D

max
z∈D
‖X−1z‖∞. (24)

711

Proof. Given a subset {x1, . . . , xd} of D and X = 712

[x1, . . . , xd] ∈ Rd×d, letting z = x1 gives ‖X−1z‖2∞= 713

‖e1‖22= 1. Thus maxz∈D‖X−1z‖2∞≥ 1 for all choices of 714

X . On the other hand, if {x1, . . . , xd} is a barycentric span- 715

ner for D, then ‖X−1z‖2∞≤ 1 for all z ∈ D. This proves 716

that a barycentric spanner solves (24). 717

Proof of Proposition 2: The expected mean-square testing
error on the test points is

1

k

k∑
i=1

E[ĝ(zi)− g(zi)]
2 =

σ2

k
tr(ZT(XXT)−1Z), (25)

where Z def
= [z1, . . . , zk] ∈ Rd×k. The learner’s goal is to 718

choose X such that the worst case value of the expected 719



mean-square testing error in (25) over the adversary’s choice720

of Z is minimized.721

Let Λ1 ∈ Rd×d denote the diagonal matrix having σi as722

its ith diagonal entry for each i. Note that if ε = [ε1, . . . , εd],723

then E(εεT) = Λ2
1. Using this along with (7) gives724

1

k

k∑
i=1

E[ĝ(zi)− g(zi)]
2

=
1

k
tr[ZT(XXT)−1XΛ2

1X
T(XXT)−1Z]

=
1

k
tr(ZTX−TΛ2

1X
−1Z) =

1

k

k∑
j=1

‖Λ1X
−1zj‖22

=
1

k

k∑
j=1

[σ2
1(eT1X

−1zj)
2 + · · ·

+ σ2
d(eTdX

−1zj)
2]. (26)

It is easy to see from (26) that the adversary can en-725

sure the worst case expected mean-square error for a given726

choice of X by setting k = 1, computing (i∗, z∗) =727

argmaxi,z|eTi X−1z|, and setting z1 = z∗, σi∗ = σ and728

σi = 0 for all i 6= i∗. Note that by definition |eTi∗X−1z∗|=729

maxz∈D‖X−1z‖∞. It is now evident from Proposition 3730

that the learner can minimize the worst case expected mean-731

square error forced by the adversary by choosing the training732

points to form a barycentric spanner for the set D. �733
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